Progress in Hybrid Temporal LES

  • Rémi ManceauEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)


In order to favour the modelling of the subgrid stresses in continuous hybrid RANS/LES methods, the comparison of the solutions with experimental or DNS databases, and eventually the understanding of the phenomenology observed in the resolved motion, defining a rigorous formalism for such methods is highly desirable [18].



Several colleagues and students have contributed over the years to the progress of temporally filtered hybrid RANS/LES approaches. They are listed alphabetically: J. Borée, A. Fadai-Ghotbi, Ch. Friess, T.B. Gatski, R. Perrin, T.T. Tran. This work was granted access to the HPC resources of IDRIS under Grant No. 2010–020912 made by GENCI (Grand Equipement National de Calcul Intensif) and to the computing facilities of the MCIA (Mésocentre de Calcul Intensif Aquitain) of the University of Bordeaux and of the University of Pau.


  1. 1.
    Archambeau, F., Méchitoua, N., Sakiz, M.: Code Saturne: a finite volume code for the computation of turbulent incompressible flows—industrial applications. Int. J. Finite Vol. (2004). ISSN: 1634(0655).
  2. 2.
    Bentaleb, Y., Manceau, R.: A hybrid temporal LES/RANS formulation based on a two-equation subfilter model. In: Proceedings of the 7th International Symposium on Turbulence and Shear Flow Phenomena, Ottawa, Canada (2011)Google Scholar
  3. 3.
    Cao, Y., Tamura, T.: Large-eddy simulations of flow past a square cylinder using structured and unstructured grids. Comput. Fluids 137, 36–54 (2016)Google Scholar
  4. 4.
    Chaouat, B.: Subfilter-scale transport model for hybrid RANS/LES simulations applied to a complex bounded flow. J. Turbul. 11(51), 1–30 (2010)Google Scholar
  5. 5.
    Chaouat, B., Schiestel, R.: A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17(065106), 1–19 (2005)Google Scholar
  6. 6.
    Fadai-Ghotbi, A., Friess, C., Manceau, R., Borée, J.: A seamless hybrid RANS-LES model based on transport equations for the subgrid stresses and elliptic blending. Phys. Fluids 22(055104) (2010)Google Scholar
  7. 7.
    Fadai-Ghotbi, A., Friess, C., Manceau, R., Gatski, T., Borée, J.: Temporal filtering: a consistent formalism for seamless hybrid RANS-LES modeling in inhomogeneous turbulence. Int. J. Heat Fluid Flow 31(3), 378–389 (2010)Google Scholar
  8. 8.
    Friess, Ch., Manceau, R., Gatski, T.B.: Toward an equivalence criterion for hybrid RANS/LES methods. Comput. Fluids 122, 233–246 (2015)Google Scholar
  9. 9.
    Gatski, T.B., Rumsey, C.L., Manceau, R.: Current trends in modeling research for turbulent aerodynamic flows. Philos. Trans. R. Soc. A 365(1859), 2389–2418 (2007)Google Scholar
  10. 10.
    Kampé de Fériet, J.: La notion de moyenne dans la théorie de la turbulence. In: Rendiconti del seminario matematico dell’universita e del politecnico, pp. 167–207. Libreria editrice politecnica, Cesare Tamburini, Milano (1957)Google Scholar
  11. 11.
    Kampé de Fériet, J., Betchov, R.: Theoretical and experimental averages of turbulent functions. Proc. K. Ned. Akad. Wet. 53, 389–398 (1951)Google Scholar
  12. 12.
    Lyn, D.A., Einav, S., Rodi, W., Park, J.-H.: Laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285–319 (1995)Google Scholar
  13. 13.
    Meneveau, C., Lund, T., Cabot, W.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)Google Scholar
  14. 14.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)Google Scholar
  15. 15.
    Pruett, C.D.: Eulerian time-domain filtering for spatial large-eddy simulation. AIAA J. 38(9), 1634–1642 (2000)Google Scholar
  16. 16.
    Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D.: The temporally filtered Navier-Stokes equations: properties of the residual stress. Phys. Fluids 15(8), 2127–2140 (2003)Google Scholar
  17. 17.
    Schiestel, R.: Multiple-time-scale modeling of turbulent flows in one-point closures. Phys. Fluids 30(3), 722–731 (1987)Google Scholar
  18. 18.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)Google Scholar
  19. 19.
    Speziale, C.G.: On the decomposition of turbulent flow fields for the analysis of coherent structures. Acta Mech. 70(1–4), 243–250 (1987)Google Scholar
  20. 20.
    Tejada-Martinez, A.E., Grosch, C.E., Gatski, T.B.: Temporal large eddy simulation of unstratified and stably stratified turbulent channel flows. Int. J. Heat Fluid Flow 28, 1244–1261 (2007)Google Scholar
  21. 21.
    Tennekes, H.: Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561–567 (1975)Google Scholar
  22. 22.
    Tran, T.T., Manceau, R., Perrin, R., Borée, J., Nguyen, A.T.: A hybrid temporal LES approach. Application to flows around rectangular cylinders. In: Proceedings of 9th ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements, Thessaloniki, Greece (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.IPRA, Department of mathematics and applied mathematicsInria CAGIRE project team, CNRS/Univ Pau & Pays AdourPauFrance

Personalised recommendations