Skip to main content

Assessment of Scale-Resolving Simulations for Turbomachinery Applications

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling (HRLM 2016)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 137))

Included in the following conference series:

Abstract

The application of scale-resolving turbulence representations in turbomachinery promises significantly improved predictions over the classical steady RANS approaches. The scale-resolving models available in the DLR solver for turbomachinery applications TRACE are presented and evaluated using three testcases, viz. a circularX cylinder mounted in a square channel, a 2D streamwise-periodic channel with one wall having hill-shaped features and a low-speed compressor cascade with a tip gap. Results are compared to RANS and URANS predictions and conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, K., Heitkamp, K., Kügeler, E.: Recent progress in a hybrid grid CFD solver for turbomachinery flows. In: Proceedings of V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal (2010)

    Google Scholar 

  2. Egorov, Y., Menter, F.: Development and application of SST-SAS turbulence model in the DESIDER project. In: Peng, S.-H., Haase, W. (eds.) Advances in Hybrid RANS-LES Modelling, NNFM, vol. 97, pp. 261–270. Springer, Berlin (2008)

    Google Scholar 

  3. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Google Scholar 

  4. Garbaruk, A., Shur, M., Strelets, M., Travin, A.: Detached-eddy simulation of a linear compressor cascade with tip gap and moving wall. In: Proceedings Symposium on Hybrid RANS-LES Methods. Stockholm, Sweden (2005)

    Google Scholar 

  5. Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.R.: Development of DDES and IDDES formulations for the \(k\)-\(\omega \) shear stress transport model. Flow Turbul. Combust 88, 431–449 (2012)

    Article  MATH  Google Scholar 

  6. Haase, W., Braza, M., Revell, A.: DESider—European Effort on Hybrid RANS-LES Modelling, NNFM, vol. 103. Springer, Berlin (2009)

    Google Scholar 

  7. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. In: Hanjalić, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer 4. Begell House (2003)

    Google Scholar 

  8. Mockett, C., Perrin, R., Reimann, T., Braza, M., Thiele, F.: Analysis of detached-eddy simulation for the flow around a circular cylinder with reference to PIV data. In: Proceedings IUTAM Symposium Unsteady Separated Flows and their Control. Corfu, Greece (2007)

    Google Scholar 

  9. Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES. In: Girimaji, S., Haase, W., Peng, S.-H., Schwamborn, D. (eds.) Progress in Hybrid RANS-LES Modelling, NNFM, vol. 130, pp. 187–202. Springer, Cham (2015)

    Google Scholar 

  10. Morsbach, C., Franke, M., di Mare, F.: Application of a low reynolds differential reynolds stress model to a compressor cascade tip-leakage flow. In: Eisfeld, B. (ed.) Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics, Springer Tracts in Mechanical Engineering, pp. 1–17. Springer International Publishing (2015)

    Google Scholar 

  11. Muthanna, C.: The effects of free stream turbulence on the flow field through a compressor cascade. Dissertation. Virginia Polytechnic Institute and State University (2002)

    Google Scholar 

  12. Nicoud, F., Ducros, F.: Subgrid-scale modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  13. Rumsey, C.L., Smith, B.R., Huang, G.P.: Description of a website resource for turbulence modeling verification and validation. In: Proceedings 40th Fluid Dynamics Conference and Exhibit, AIAA Paper 2010-4742. Chicago, USA (2010)

    Google Scholar 

  14. Shur, M.L., Spalart, P.R., Strelets, M.Kh., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  15. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Month. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  16. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.Kh., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  17. Strelets, M.: Detached eddy simulations of massively separated flows. In: Proceedings 39th Aerospace Science Meeting and Exhibit, AIAA Paper 2001-0879. Reno, USA (2001)

    Google Scholar 

  18. Tang, G.: Measurements of the tip-gap turbulent flow structure in a low-speed compressor cascade. Dissertation, Virginia Polytechnic Institute and State University (2004)

    Google Scholar 

  19. Teramoto, S., Ouchi, T., Sanada, H., Okamoto, K.: Application of high-resolution large eddy simulation to simplified turbomachinery flows. In: Proceedings ASME Turbo Expo 2016, GT2016-57299. Seoul, South Korea (2016)

    Google Scholar 

  20. Travin, A., Shur, M., Strelets, M., Spalart, P.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Proceedings of the 412th Euromech Colloquium on LES and Complex Transitional and Turbulent Flows. Munich, Germany (2000)

    Google Scholar 

  21. Werner, H., Wengle, H.: Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In: Proceedings Eighth Symposium on Turbulent Shear Flows. Munich, Germany (1991)

    Google Scholar 

  22. You, D., Mittal, R., Wang, M., Moin, P.: Large-eddy simulation of a rotor tip-clearance flow. In: Proceedings 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2002-0981. Reno, USA (2002)

    Google Scholar 

  23. You, D., Wang, M., Moin, P., Mittal, R.: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J. Fluid Mech. 586, 177–204 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Morsbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franke, M., Morsbach, C. (2018). Assessment of Scale-Resolving Simulations for Turbomachinery Applications. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A. (eds) Progress in Hybrid RANS-LES Modelling. HRLM 2016. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-70031-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70031-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70030-4

  • Online ISBN: 978-3-319-70031-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics