Advertisement

Assessment of Scale-Resolving Simulations for Turbomachinery Applications

  • M. Franke
  • C. MorsbachEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

The application of scale-resolving turbulence representations in turbomachinery promises significantly improved predictions over the classical steady RANS approaches. The scale-resolving models available in the DLR solver for turbomachinery applications TRACE are presented and evaluated using three testcases, viz. a circularX cylinder mounted in a square channel, a 2D streamwise-periodic channel with one wall having hill-shaped features and a low-speed compressor cascade with a tip gap. Results are compared to RANS and URANS predictions and conclusions are drawn.

References

  1. 1.
    Becker, K., Heitkamp, K., Kügeler, E.: Recent progress in a hybrid grid CFD solver for turbomachinery flows. In: Proceedings of V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal (2010)Google Scholar
  2. 2.
    Egorov, Y., Menter, F.: Development and application of SST-SAS turbulence model in the DESIDER project. In: Peng, S.-H., Haase, W. (eds.) Advances in Hybrid RANS-LES Modelling, NNFM, vol. 97, pp. 261–270. Springer, Berlin (2008)Google Scholar
  3. 3.
    Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)Google Scholar
  4. 4.
    Garbaruk, A., Shur, M., Strelets, M., Travin, A.: Detached-eddy simulation of a linear compressor cascade with tip gap and moving wall. In: Proceedings Symposium on Hybrid RANS-LES Methods. Stockholm, Sweden (2005)Google Scholar
  5. 5.
    Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.R.: Development of DDES and IDDES formulations for the \(k\)-\(\omega \) shear stress transport model. Flow Turbul. Combust 88, 431–449 (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Haase, W., Braza, M., Revell, A.: DESider—European Effort on Hybrid RANS-LES Modelling, NNFM, vol. 103. Springer, Berlin (2009)Google Scholar
  7. 7.
    Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. In: Hanjalić, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer 4. Begell House (2003)Google Scholar
  8. 8.
    Mockett, C., Perrin, R., Reimann, T., Braza, M., Thiele, F.: Analysis of detached-eddy simulation for the flow around a circular cylinder with reference to PIV data. In: Proceedings IUTAM Symposium Unsteady Separated Flows and their Control. Corfu, Greece (2007)Google Scholar
  9. 9.
    Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES. In: Girimaji, S., Haase, W., Peng, S.-H., Schwamborn, D. (eds.) Progress in Hybrid RANS-LES Modelling, NNFM, vol. 130, pp. 187–202. Springer, Cham (2015)Google Scholar
  10. 10.
    Morsbach, C., Franke, M., di Mare, F.: Application of a low reynolds differential reynolds stress model to a compressor cascade tip-leakage flow. In: Eisfeld, B. (ed.) Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics, Springer Tracts in Mechanical Engineering, pp. 1–17. Springer International Publishing (2015)Google Scholar
  11. 11.
    Muthanna, C.: The effects of free stream turbulence on the flow field through a compressor cascade. Dissertation. Virginia Polytechnic Institute and State University (2002)Google Scholar
  12. 12.
    Nicoud, F., Ducros, F.: Subgrid-scale modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust 62, 183–200 (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Rumsey, C.L., Smith, B.R., Huang, G.P.: Description of a website resource for turbulence modeling verification and validation. In: Proceedings 40th Fluid Dynamics Conference and Exhibit, AIAA Paper 2010-4742. Chicago, USA (2010)Google Scholar
  14. 14.
    Shur, M.L., Spalart, P.R., Strelets, M.Kh., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  15. 15.
    Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Month. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  16. 16.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.Kh., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Strelets, M.: Detached eddy simulations of massively separated flows. In: Proceedings 39th Aerospace Science Meeting and Exhibit, AIAA Paper 2001-0879. Reno, USA (2001)Google Scholar
  18. 18.
    Tang, G.: Measurements of the tip-gap turbulent flow structure in a low-speed compressor cascade. Dissertation, Virginia Polytechnic Institute and State University (2004)Google Scholar
  19. 19.
    Teramoto, S., Ouchi, T., Sanada, H., Okamoto, K.: Application of high-resolution large eddy simulation to simplified turbomachinery flows. In: Proceedings ASME Turbo Expo 2016, GT2016-57299. Seoul, South Korea (2016)Google Scholar
  20. 20.
    Travin, A., Shur, M., Strelets, M., Spalart, P.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Proceedings of the 412th Euromech Colloquium on LES and Complex Transitional and Turbulent Flows. Munich, Germany (2000)Google Scholar
  21. 21.
    Werner, H., Wengle, H.: Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In: Proceedings Eighth Symposium on Turbulent Shear Flows. Munich, Germany (1991)Google Scholar
  22. 22.
    You, D., Mittal, R., Wang, M., Moin, P.: Large-eddy simulation of a rotor tip-clearance flow. In: Proceedings 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2002-0981. Reno, USA (2002)Google Scholar
  23. 23.
    You, D., Wang, M., Moin, P., Mittal, R.: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J. Fluid Mech. 586, 177–204 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.DLR, Institute of Propulsion TechnologyBerlinGermany
  2. 2.DLR, Institute of Propulsion TechnologyKölnGermany

Personalised recommendations