On the von Karman Length Scale as a Triggering Parameter in Eddy-Resolving Simulations of Turbulent Flows

  • R. Maduta
  • S. JakirlicEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)


The von Karman length scale \( {\text{L}}_{\text{vK}} =\upkappa{\text{S}}/\left| {\nabla^{2} {\text{U}}} \right| \) represents a key element in triggering the flow to generate resolved turbulence in Scale-Adaptive Simulations (SAS) [8, 9, 12] analog to the role of grid spacing \( \Delta \left( { = \sqrt[3]{{\Delta _{\text{x}}\Delta _{\text{y}}\Delta _{\text{z}} }}} \right) \) in Large-Eddy Simulation (LES). Accordingly, the \( {\text{L}}_{\text{vK}} \) parameter mimics the length scale characterizing the resolved motion within the SAS framework. It represents a flow variable of decisive importance in additional source term providing selective enhancement of the dissipation rate production, mostly in the separated shear layer regions. The main objective of the present work is the visualization of the structural properties of the \( {\text{L}}_{\text{vK}} \) length scale in some internal and external flow configurations subjected to different straining originating from the boundary layer separation from sharp-edged and continuous curved surfaces. Furthermore, the present work attempts to establish a relationship between the \( {\text{L}}_{\text{vK}} \) length scale and grid resolution (in terms of grid spacing \( \Delta \)) in relation to the flow unsteadiness characterization, identifying the SAS method capabilities of capturing appropriately the fluctuating turbulence.



The work of R. Maduta has been funded by the EU Project ATAAC (ACP8-GA-2009-233710).


  1. 1.
    Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: Near-wall formulation of the partially averaged Navier–Stokes (PANS) turbulence model. AIAA J. 49(12), 2627–2636 (2011)CrossRefGoogle Scholar
  2. 2.
    Breuer, M., Peller, N., Rapp, Ch., Manhart, M.: Flow over periodic hills - Numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chaouat, B., Schiestel, R.: A new partially integrated transport model (PITM) for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17(065106): 1-19 (2005)zbMATHGoogle Scholar
  4. 4.
    Cherry, E.M., Elkins, C.J., Eaton, J.K.: Geometric sensitivity of three-dimensional separated flows. Int. J. Heat Fluid Flow 29, 803–811 (2008)CrossRefGoogle Scholar
  5. 5.
    Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Girimaji, S.S.: Partially-averaged Navier-Stokes (PANS) model for turbulence: a Reynolds-averaged Navier-Stokes to Direct Numerical Simulation Bridging Method. J. Appl. Mech. 73, 413–421 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 439, 139–166 (2002)zbMATHGoogle Scholar
  8. 8.
    Jakirlić, S., Maduta, R.: Extending the bounds of “steady” RANS closures: towards an instability-sensitive Reynolds stress model. Int. J. Heat Fluid Flow 51, 175–194 (2015)CrossRefGoogle Scholar
  9. 9.
    Jakirlić, S., Maduta, R.: Sensitized RANS modelling of turbulence: resolving turbulence unsteadiness by a (near-wall) Reynolds stress model. In: Stanislas, M., Jimenez, J., Marusic, I. (eds.) Progress in Wall Turbulence 2: Understanding and Modeling, ERCOFTAC Series, vol. 23, pp. 17–35. Springer, (2015). (ISBN 978-3-319-20387-4)Google Scholar
  10. 10.
    Larsen, P.S., Schmidt, J.J., U. Ullum, U.: Experimental study of temporal and spatial structures in fence-on-wall test case. In: IUTAM Symposium on Simulation and Identification of Organized Structures in Flows, in Fluid Mechanics and its Applications, vol. 52, pp. 25–37. Kluwer Academic Publisher (1999)Google Scholar
  11. 11.
    Lincke, A.: Verification and validation of von Karman length scale for identification of turbulent structures. DLR Report FB-Nr. 2009-23 (2009)Google Scholar
  12. 12.
    Menter, F., Egorov, Y.: The Scale-adaptive Simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow, Turbulence and Combustion 85: 113-138 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Menter, F.R., Egorov, Y.: Re-visiting the turbulent scale equation. In: Meier G.E.A., Sreenivasan K.R (eds.) Proceedings of the IUTAM Symp. One Hundred Years of Boundary Layer Research, pp. 279–290. Springer Publisher, Göttingen (2006). (ISBN-10 1-4020-4149-7)Google Scholar
  14. 14.
    Menter, F.R., Egorov, Y.: SAS turbulence modelling of technical flows. In: Lamballais E. et al. (eds.) Direct and Large Eddy Simulation (DLES) VI (Proceedings of the Sixth International ERCOFTAC Workshop on Direct and Large-Eddy Simulation, University of Poitiers, 12–14 Sept 2005), pp. 687–694. Springer Publisher (2006). (ISBN-10 1-4020-4909-9)Google Scholar
  15. 15.
    Menter, F.R, Kuntz, M., Bender R.: A scale-adaptive simulation model for turbulent flow predictions. AIAA Paper No. 2003-0767 (2003)Google Scholar
  16. 16.
    Neuhart, D.H., Jenkins, L.N., Choudhari, M.M., Khorrami, M.R.: Measurements of the Flowfield Interaction between Tandem Cylinders. AIAA Paper No. 2009-3275 (2009)Google Scholar
  17. 17.
    Ohlsson, J., Schlatter, P., Fischer P.F., Henningson, D.S.: DNS of separated flow in a three-dimensional diffuser by the spectral-element method. J. Fluid Mech. 650, 307–318 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model (PITM) for coarse grid and unsteady turbulent flow simulations. Theoret. Comput. Fluid Dyn. 18(6), 443–468 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) 1st AF OSR International Conference on DNS and LES Advances in DNS/LES, Columbus, OH, pp. 137–147. Greyden Press (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Aerodynamics/Center of Smart Interfaces, Technische Universität DarmstadtDarmstadtGermany
  2. 2.Outotec GmbHOberurselGermany

Personalised recommendations