On Scale-Resolving Simulation of Turbulent Flows Using Higher-Accuracy Quasi-1D Schemes on Unstructured Meshes

  • Alexey DubenEmail author
  • Tatiana Kozubskaya
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)


The paper is focused on the scale-resolving simulation of turbulent flow using quasi-1D schemes on unstructured meshes. The numerical algorithm is based on the Edge-Based Reconstruction (EBR) scheme possessing higher accuracy and moderate computational costs on unstructured meshes. We discuss issues related to the application of low-dissipative version of EBR scheme for the scale-resolving simulation on anisotropic meshes. Some techniques which improve the scheme robustness are proposed. The feasibility of the developed numerical algorithm is demonstrated on the two cases. The first problem is immersed subsonic unheated round jet, \(\mathrm{{M}}_{jet}=0.9\), \(\mathrm{{Re}}_D=1.1\times 10^6\). The second one is turbulent flow over M219 cavity \(\mathrm {M}_\infty =0.85\), \(\mathrm{{Re}}_H=1.37\times 10^6\). The results are in a good agreement both in aerodynamic and acoustic characteristics with the corresponding experimental data. The computations show a strong sensitivity of the results of scale-resolving simulations to the numerical scheme in use and confirm a need in its careful adjustment.



The research is supported by Russian Science Foundation. The implementation of the DES approach [18] on unstructured meshes and the computations are performed within Project 14-11-00060. The development of adapting higher-accuracy algorithms is a part of Project 16-11-10350. The computations were carried out using “Lomonosov” (MSU) and “10P” (JSCC RAS) supercomputers.


  1. 1.
    Abalakin, I.V., Bakhvalov, P.A., Kozubskaya, T.K.: Edge-based reconstruction schemes for pre-diction of near field flow region in complex aeroacoustic problems. Int. J. Aeroacoust. 13(3–4), 207–234 (2014)Google Scholar
  2. 2.
    Abalakin, I.V., Bakhvalov, P.A., Kozubskaya, T.K.: Edge-based reconstruction schemes for unstructured tetrahedral meshes. Int. J. Num. Methods Fluids (2015).
  3. 3.
    Abalakin, I.V., Bakhvalov, P.A., Gorobets, A.V., Duben, A.P., Kozubskaya T.K.: Parallel research code NOISEtte for large-scale computations of aerodynamics and aero-acoustics problems. Vychisl. Metody Programm. 13(3), 110–125 (2012)Google Scholar
  4. 4.
    Arakeri, V.H., Krothapalli, A., Siddavaram, V, Alkislar, M.B., Lourenco, L.M.: On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid. Mech. (2003).
  5. 5.
    Bridges, J., Wernet, M.P.: Establishing consensus turbulence statistics for hot subsonic jets. AIAA Paper, AIAA 2010–3751 (2010)Google Scholar
  6. 6.
    Dankov, B.N., Duben, A.P., Kozubskaya, T.K.: Numerical modeling of the self-oscillation onset near a three-dimensional backward-facing step in a transonic flow. Fluid Dyn. (2016).
  7. 7.
    Duben, A.P.: Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes. Math. Model Comput. Simul. 6(2), 162–171 (2014)Google Scholar
  8. 8.
    Ffowcs Williams, J.E., Hawkings, D.L.: Sound generated by turbulence and surfaces in unsteady motion. Philos. Trans. R. Soc. A A264(1151), 321–342 (1969)Google Scholar
  9. 9.
    de Henshaw, M.J.C.: M219 cavity case: verification and validation data for computational unsteady aerodynamics. Technical Report RTO-TR-26, AC/323(AVT)TP/19, pp. 453–472. QinetiQ, UK (2002)Google Scholar
  10. 10.
    Lau, J.C., Morris, P.J., Fisher, M.J.: Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. (1979).
  11. 11.
    Lau, J.C.: Effects of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets. J. Fluid Mech. (1981).
  12. 12.
    Peng, S.-H.: M219 Cavity flow. In: Haase, W., Braza, M., Revell, A. (eds.) DESider—A European Effort on Hybrid RANS-LES Modelling, pp. 270–285. Springer (2009)Google Scholar
  13. 13.
    Roe, L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)Google Scholar
  14. 14.
    Simonich, J.C., Narayanan, S., Barber, T.J., Nishimura, M.: Aeroacoustic characterization, noise reduction and dimensional scaling effects of high subsonic jets. AIAA J. (2001).
  15. 15.
    Shur, M.L., Strelets, M.Kh., Spalart, P.R., Travin A.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Friederich, R., Rodi, W. (eds.) Advances in LES of Complex Flows, Fluid Mechanics and its Applications, vol. 65, pp. 239–254. Kluwer Academic Publishers (2004)Google Scholar
  16. 16.
    Shur, M.L., Spalart, P.S., Strelets, M.Kh.: Noise prediction for increasingly complex jets, Part I: Methods and tests. Int. J. Aeroacoust. 4(3+4), 213–246 (2005)Google Scholar
  17. 17.
    Shur, M., Spalart, P.R., Strelets, M.: LES-based evaluation of a microjet noise reduction concept in static and flight conditions. J. Sound Vib. 330, 4083–4097 (2011)Google Scholar
  18. 18.
    Shur, M.L., Spalart, P.R., Strelets, M.Kh., Travin, A.K.: An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow Turbul. Combust. 95(4), 709–737 (2015)Google Scholar
  19. 19.
    Shur, M., Spalart, P.R., Strelets, M.: Jet noise computation based on enhanced DES formulations accelerating the RANS-to-LES transition in free shear layers. Int. J. Aeroacoust. (2016).
  20. 20.
    Viswanathan, K.: Aeroacoustics of hot jets. J. Fluid Mech. (2004).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Keldysh Institute of Applied Mathematics of RASMoscowRussia

Personalised recommendations