Advertisement

Scale-Resolving Simulations Based on a Lattice-Boltzmann Method

  • Benjamin DudaEmail author
  • Ehab Fares
  • Benedikt König
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 137)

Abstract

This paper gives an overview on the scale-resolving capabilities of the Lattice-Boltzmann Method as implemented in the solver PowerFLOW. The basic concept of the approach is outlined, which comprises the turbulence modelling strategy. Following this are three examples ranging from fundamental to geometrically complex test cases: a shear layer, the flow over the NASA Hump and the flow over an iced airfoil. It is shown for all cases that transition from modelled to resolved turbulent fluctuations is achieved automatically once the flow separates with a flow based sensor if grid resolution is sufficient. Agreement with experimental reference data is good. As this paper is only intended to give a general overview, additional insight into each case is available in the corresponding reference papers.

References

  1. 1.
    Brès, G.A., Freed, D.M., Wessels, M., Noelting, S., Pérot, F.: Flow and noise predictions for the tandem cylinder aeroacoustic benchmark. Phys. Fluids 24(3), 036–101 (2012)CrossRefGoogle Scholar
  2. 2.
    Casalino, D., Ribeiro, A.F.P., Fares, E., Nölting, S.: Lattice-Boltzmann aeroacoustic analysis of the lagoon landing gear configuration. AIAA J. 52(6), 1232–1248 (2014)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Teixeira, C.: H-theorem and origins of instability in thermal lattice Boltzmann models. Comput. Phys. Commun. 129, 21–31 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, H., Chen, S., Matthaeus, W.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45(8), 5339–5342 (1992)CrossRefGoogle Scholar
  5. 5.
    Chen, H., Teixeira, C.M., Molvig, K.: Digital physics approach to computational fluid dynamics: some basic theoretical features. Int. J. Mod. Phys. C 8(4), 675–684 (1997)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Teixeira, C.M., Molvig, K.: Realization of fluid boundary conditions via discrete Boltzmann dynamics. Int. J. Mod. Phys. C 9(8), 1281–1292 (1998)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Kandasamy, S., Orszag, S.A., Succi, S., Yakhot, V.: Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633), 633–636 (2003)CrossRefGoogle Scholar
  8. 8.
    Duda, B., Fares, E.: Application of the Lattice-Boltzmann method to the separated flow behind the NASA hump. AIAA 2016-1836 (2016)Google Scholar
  9. 9.
    Duda, B., Fares, E., Kotapati, R.: Application of the Lattice-Boltzmann method to shear layer flows. AIAA 2015-1970 (2015)Google Scholar
  10. 10.
    Fares, E., Jelic, S., Kuthada, T., Schroeck, D.: Lattice Boltzmann thermal flow simulation and measurements of a modified sae model with heated plug. In: Proceedings of FEDSM 2006-98467 (2006)Google Scholar
  11. 11.
    Fares, E.: Unsteady flow simulation of the ahmed reference body using a lattice Boltzmann approach. J. Comput. Fluids 35, 940–950 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Greenblatt, D., Paschal, K., Yao, C.-S., Harris, J., Schaeffler, N., Washburn, A.: A separation control CFD validation test case, part 1: baseline and steady suction. AIAA 2004-2220 (2004)Google Scholar
  13. 13.
    Khorrami, M.R., Fares, E., Casalino, D.: Towards full aircraft airframe noise prediction: lattice Boltzmann simulations. AIAA Paper 2014-2480 (2014)Google Scholar
  14. 14.
    Koenig, B., Fares, E., Broeren, A.P.: Lattice-Boltzmann analysis of three-dimensional ice shapes on the NACA 23012 airfoil. SAE Paper 2015-01-2084 (2015)Google Scholar
  15. 15.
    Li, Y., Shock, R., Zhang, R., Chen, H.: Numerical study of flow past an impulsively started cylinder by Lattice Boltzmann method. J. Fluid Mech. 519, 273–300 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Marié, S., Ricot, D., Sagaut, P.: Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics. J. Comput. Phys. 228Google Scholar
  17. 17.
    Naughton, J., Viken, S., Greenblatt, D.: Wall shear stress measurements on the NASA hump model for CFD validation. AIAA 2004-2607 (2004)Google Scholar
  18. 18.
    Noelting, S., Fares, E.: The Lattice-Boltzmann method: an alternative to LES for complex aerodynamic and aeroacoustic simulations in the aerospace industry. SAE Technical Paper 2015-01-2575 (2015)Google Scholar
  19. 19.
    Qian, Y., d’Humieres, D., Lallemand, P.: Lattice BGK models for the Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sanjosé, M., Méony, C., Massony, V., Moreau, S.: Direct numerical simulation of acoustic reduction using serrated trailing-edge on an isolated airfoil. AIAA 2014-2324 (2016)Google Scholar
  21. 21.
    Shan, X., Yuan, X.-F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J. Fluid Mech. 550, 413–441 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Spalart, P., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach. In: Proceedings of the First AFOSR International Conference on DNS/LES (1997)Google Scholar
  23. 23.
    Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)Google Scholar
  24. 24.
    Teixeira, C.M.: Incorporating turbulence models into the Lattice-Boltzmann method. Int. J. Modern Phys. C 9, 1159–1175 (1998)CrossRefGoogle Scholar
  25. 25.
    Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Exa GmbHMünchenGermany
  2. 2.Exa GmbHStuttgartGermany

Personalised recommendations