Skip to main content

The Feature Extraction of ECG Signal in Myocardial Infarction Patients

  • Conference paper
  • First Online:
Advances in Natural Language Processing, Intelligent Informatics and Smart Technology (SNLP 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 684))

Included in the following conference series:

Abstract

Cardiovascular disease is one of the most serious diseases in the world. The physicians use electrocardiogram (ECG) to detect and diagnosis cardiovascular diseases. To enhance the ECG analysis performance, quality of the ECG signal needs to be improved. This paper proposes an ECG analysis algorithm using Wavelet transform to classify Myocardial Infarction patients. Steps in the ECG signal analysis are noise elimination of ECG signal, R peak Detection, QRS Complex Detection and Myocardial Infarction Classification. The results showed that the accuracy of classification equaled 75%, the sensitivity was 80% and the specificity was at 77.78%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. World Health Organization. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/. cited 13 Oct 2014

  2. Thygesen, K., et al.: Third Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 60(16), 1581–1598 (2012)

    Article  Google Scholar 

  3. Napodano, M., Paganelli, C.: ECG in Acute Myocardial Infarction in the Reperfusion Era. INTECH Open Access Publisher, (2012)

    Google Scholar 

  4. Martis, R.J., et al.: Cardiac decision making using higher order spectra. Biomed. Signal Process. Control 8(2), 193–203 (2013)

    Article  Google Scholar 

  5. Burns, N.: Cardiovascular physiology. Retrieved from School of Medicine, Trinity College, Dublin (2013). http://www.medicine.tcd.ie/physiology/assets/docs12_13/lecturenotes/NBurns/Trinity%20CVS%20lecture

  6. Klabunde, R.: Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins (2011)

    Google Scholar 

  7. Manikandan, M.S., Dandapat, S.: Wavelet-based electrocardiogram signal compression methods and their performances: A prospective review. Biomed. Signal Process. Control 14, 73–107 (2014)

    Article  Google Scholar 

  8. Acharya, R., et al.: Advances in Cardiac Signal Processing. Springer, New York (2007)

    Book  MATH  Google Scholar 

  9. Saritha, C., Sukanya, V., Murthy, Y.N.: ECG signal analysis using wavelet transforms. Bulg. J. Phys 35(1), 68–77 (2008)

    MATH  Google Scholar 

  10. Mateo, J., Sánchez-Morla, E.M., Santos, J.L.: A new method for removal of powerline interference in ECG and EEG recordings. Comput. Electr. Eng. (2015)

    Google Scholar 

  11. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  12. Martis, R.J., et al.: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39(14), 11792–11800 (2012)

    Article  Google Scholar 

  13. Thomas, M., Das, M.K., Ari, S.: Automatic ECG arrhythmia classification using dual tree complex wavelet based features. AEU-Int. J. Electron. Commun. (2015)

    Google Scholar 

  14. Chang, P.-C., et al.: Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models. Appl. Soft Comput. 12(10), 3165–3175 (2012)

    Article  Google Scholar 

  15. Banerjee, S., Gupta, R., Mitra, M.: Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measur. 45(3), 474–487 (2012)

    Google Scholar 

  16. Sun, L., et al.: ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)

    Article  Google Scholar 

  17. Banerjee, S., Mitra, M.: Application Of Cross Wavelet Transform For Ecg Pattern Analysis And Classification. (2014)

    Google Scholar 

  18. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circ. 101(23), e215–e220 (2000)

    Article  Google Scholar 

  19. Zadeh, A.E., Khazaee, A., Ranaee, V.: Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Programs Biomed. 99(2), 179–194 (2010)

    Article  Google Scholar 

  20. Manikandan, M.S., Soman, K.P.: A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control 7(2), 118–128 (2012)

    Article  Google Scholar 

  21. Rai, H.M., Trivedi, A., Shukla, S.: ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier. Meas. 46(9), 3238–3246 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by King Mongkut’s University of Technology North Bangkok. Contract no. KMUTNB-GOV-59-50.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchana Muankid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ketcham, M., Muankid, A. (2018). The Feature Extraction of ECG Signal in Myocardial Infarction Patients. In: Theeramunkong, T., Kongkachandra, R., Supnithi, T. (eds) Advances in Natural Language Processing, Intelligent Informatics and Smart Technology. SNLP 2016. Advances in Intelligent Systems and Computing, vol 684. Springer, Cham. https://doi.org/10.1007/978-3-319-70016-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70016-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70015-1

  • Online ISBN: 978-3-319-70016-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics