Emerging Contaminants: Occurrence, Treatment Efficiency and Accumulation Under Varying Flows

  • Katharina TonderaEmail author
  • Godecke-Tobias Blecken
  • Julien Tournebize
  • Maria Viklander
  • Heléne Österlund
  • Alexandra Andersson Wikström
  • Chris C. Tanner
Part of the SpringerBriefs in Water Science and Technology book series (BRIEFSWATER)


Emerging contaminants became a major topic in water treatment when laboratory detection methods for concentrations at a nanogram-scale improved approximately two decades ago. Research on using ecotechnologies to remove emerging contaminants in variable stormwater and wastewater flows has been conducted for more than a decade, but so far, not all removal mechanisms are well understood and only few setups have been investigated. This chapter summarises the current knowledge, focussing on pesticides and emerging contaminants listed on the watch list of the European Union. However, large-scale investigations are still rare and further research will have to be conducted in this field to enable practitioners to provide recommendations for design and maintenance of treatment facilities in the field of ecotechnologies.


  1. Andersson M, Ottesen RT, Volden T (2004) Building materials as a source of PCB pollution in Bergen, Norway. Sci Total Environ 325(1–3):139–144CrossRefGoogle Scholar
  2. Andersson J, Owenius S, Stråe D (2012) NOS-dagvatten: Uppföljning av dagvattenanläggningar i fem Stockholmskommuner (NOS-stormwater: evaluation of stormwater treatment facilities in five municipalities in Stockholm). Swedish Water and Wastewater Association, Report 2012-02. Stockholm, Sweden (in Swedish)Google Scholar
  3. Andersson Wikström A, Österlund H, Hedström A, Viklander M (2015) The release of pollutants from roofing materials in laboratory experiments IWA International Conference on Diffuse Pollution and Eutrophication, Berlin, Germany 13–15 September 2015Google Scholar
  4. Babut M, Arts GH, Caracciolo AB, Carluer N, Domange N, Friberg N, Gouy V, Grung M, Lagadic L, Martin-Laurent F, Mazzella N, Pesce S, Real B, Reichenberger S, Roex EWM, Romijn K, Rottele M, Stenrod M, Tournebize J, Vernier F, Vindimian E (2013) Pesticide risk assessment and management in a globally changing world-report from a European interdisciplinary workshop. Environ Sci Poll Res 20(11):8298–8312CrossRefGoogle Scholar
  5. Björklund K (2011) Sources and fluxes of organic contaminants in urban runoff. Dissertation, Chalmers University of TechnologyGoogle Scholar
  6. Björklund K, Malmqvist P, Strömvall A (2007) Källor till och flöden av ftalater och nonylfenoler i Stockholms dagvatten (Sources and flows of phtalates and nonylphenols in Stockholm’s stormwater) Stockholm Municipality, SwedenGoogle Scholar
  7. Blankenberg A-GB, Haarstad K, Braskerud BC (2007) Pesticide retention in an experimental wetland treating non-point source pollution from agriculture runoff. Water Sci Technol 55(3):37–44CrossRefGoogle Scholar
  8. Boithias L, Sauvage S, Merlina G, Jean S, Probst JL, Perez JML (2014) New insight into pesticide partition coefficient K-d for modelling pesticide fluvial transport: application to an agricultural catchment in South-Western France. Chemosphere 99:134–142CrossRefGoogle Scholar
  9. Bollmann UE, Vollertsen J, Carmeliet J, Bester K (2014) Dynamics of biocide emissions from buildings in a suburban stormwater catchment—concentrations, mass loads, and emission processes. Water Res 56:66–76CrossRefGoogle Scholar
  10. Branger F, Tournebize J, Carluer N, Kao C, Braud I, Vauclin M (2009) A simplified modelling approach for pesticide transport in a tile-drained field: the Pestdrain model. Agric Water Manag 96(3):415–428CrossRefGoogle Scholar
  11. Braskerud BC, Haarstad K (2003) Screening the retention of thir-teen pesticides in a small constructed wetland. Water Sci Technol 48:267–274Google Scholar
  12. Bressy A, Gromaire M, Lorgeoux C, Chebbo G (2011) Alkylphenols in atmospheric depositions and urban runoff. Water Sci Technol 63(4):671–679CrossRefGoogle Scholar
  13. Brix H (1997) Do Macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35(5):11–17Google Scholar
  14. Burkhardt M, Kupper T, Hean S, Haag S, Schmid P, Kohler M, Boiler M (2007) Biocides used in building materials and their leaching behavior to sewer systems. Water Sci Technol 56(12):63–67CrossRefGoogle Scholar
  15. Christoffels E, Mertens FM, Kistemann T, Scheiber C (2014) Retention of pharmaceutical residues and microorganisms of the Altendorf retention soil filter. Water Sci Technol 70(9):1503–1509CrossRefGoogle Scholar
  16. Deffontis S, Breton A, Vialle C, Montrejaud-Vignoles M, Vignoles C, Sablayrolles C (2013) Impact of dry weather discharges on annual pollution from a separate storm sewer in Toulouse, France. Sci Total Environ 452:394–403CrossRefGoogle Scholar
  17. DeLorenzo ME, Thompson B, Cooper E, Moore J, Fulton MH (2012) A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek. Environ Monit Assess 184(1):343–359CrossRefGoogle Scholar
  18. Diblasi CJ, Li H, Davis AP, Ghosh U (2009) Removal and Fate of Polycyclic Aromatic Hydrocarbon Pollutants in an Urban Stormwater Bioretention Facility. Environ. Sci. Technol 43(2):494–502Google Scholar
  19. EU (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur CommunitiesGoogle Scholar
  20. European Commission (2012) Directive of the European Parliament and of the council amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. COM(2011) 876 final 2011/0429 (COD). European Commission, 35 pp. Accessed 1 June 2016Google Scholar
  21. European Commission (2015) Commission Implementing Decision (EU) 2015/ 495—of 20 March 2015—establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/ 105/ EC of the European Parliament and of the Council C(2015) 1756, 3 pp. Accessed 1 June 2016Google Scholar
  22. Gasperi J, Laborie B, Rocher V (2012a) Treatment of combined sewer overflows by ballasted flocculation: removal study of a large broad spectrum of pollutants. Chem Eng J 211–212:293–301CrossRefGoogle Scholar
  23. Gasperi J, Zgheib S, Cladière M, Rocher V, Moilleron R, Chebbo G (2012b) Priority pollutants in urban stormwater: Part 2—case of combined sewers. Water Res 46:6693–6703CrossRefGoogle Scholar
  24. Gasperi J, Sebastian C, Ruban V, Delamain M Percot S Wiest L, Mirande C, Caupos E, Demare D, Diallo Kessoo Kessoo M. Saad M, Schwartz JJ. Dubois P, Fratta C, Wolff H, Moilleron R, Chebbo G, Cren C, Millet M, Barraud S, Gromaire MC (2014) Micropollutants in urban stormwater: occurrence, concentrations, and atmospheric contributions for a wide range of contaminants in three French catchments. Environ Sci Pollut Res 21:5267–5281Google Scholar
  25. Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, Schutz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ Chem Lett 7(3):205–231CrossRefGoogle Scholar
  26. Hoyos-Hernandez C (2010) Degradation du S-metolachlor dans une zone tampon humide artificielle en fonction de l’activité microbienne, des conditions d’oxydoréduction et de différentes sources de carbone. Master thesis, in French. Vol. Master II Ingénierie biologique de l’environment, Université Paris Est Créteil, France, p. 62Google Scholar
  27. Hunt J, Anderson B, Philips B, Tjeerdema R, Largay B, Beretti M, Bern A (2008) Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems. Environ Poll 156:348–358CrossRefGoogle Scholar
  28. Janzen N, Banzhaf S, Scheytt T, Bester K (2009) Vertical flow soil filter for the elimination of micro pollutants from storm and waste water. Chemosphere 77(10):1358–1365Google Scholar
  29. Jartun M, Ottesen RT, Steinnes E, Volden T (2009) Painted surfaces—important sources of polychlorinated biphenyls (PCBs) contamination to the urban and marine environment. Environ Pollut 157(1):295–302CrossRefGoogle Scholar
  30. Jekel M, Dott W, Bergmann A, Dunnbier U, Gnirss R, Haist-Gulde B, Hamscher G, Letzel M, Licha T, Lyko S, Miehe U, Sacher F, Scheurer M, Schmidt CK, Reemtsa T, Ruhl AS (2015) Selection of organic process and source indicator substances for the anthropogenically influenced water cycle. Chemosphere 125:155–167CrossRefGoogle Scholar
  31. Junestedt C, Cerne O, Ek M, Solyom P, Palm A (2004) Jämförelse av olika utsläpp till vatten (Comparison of different discharges to water bodies). IVL Swedish Environmental Institute, StockholmGoogle Scholar
  32. KemI (2015) Alkylfenoler och deras derivat (alkyl phenols and their derivates). StockholmGoogle Scholar
  33. Kladivko EJ, Brown LC, Baker JL (2001) Pesticide transport to subsurface tile drains in humid regions of North America. Critical Review Environ Sci Tech 31(19)Google Scholar
  34. Launay MA, Dittmer U, Steinmetz H (2016) Organic micropollutants discharged by combined sewer overflows—Characterisation of pollutant sources and stormwater-related processes. Water Res 104:82–92CrossRefGoogle Scholar
  35. Lefevre GH, Novak PJ, Hozalski RM (2012) Fate of naphthalene in laboratory-scale bioretention cells: implications for sustainable stormwater management. Environ Sci Technol 46(2):995–1002CrossRefGoogle Scholar
  36. Madoux-Humery AS, Dorner SM, Sauvé S, Aboulfadl K, Galarneau M, Servais P, Prévost M (2013) Temporal variability of combined sewer overflow contaminants: Evaluation of wastewater micropollutants as tracers of fecal contamination. Water Res 47(13):4370–4382Google Scholar
  37. Madoux-Humery AS, Dorner SM, Sauvé S, Aboulfadl K, Galarneau M, Servais P, Prévost M (2015) Temporal analysis of E. coli, TSS and wastewater micropollutant loads from combined sewer overflows: implications for management. Environ Sci: Process Impacts 17(5):965–974Google Scholar
  38. Maillard E, Imfeld G (2014) Pesticide mass budget in a stormwater wetland. Environ Sci Technol 48(15):8603–8611CrossRefGoogle Scholar
  39. Maillard E, Payraudeau S, Faivre E, Grégoire C, Gangloff S, Imfeld G (2011) Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci Total Environ 409(11):2317–2324CrossRefGoogle Scholar
  40. McIntyre JK, Davis JW, Hinman C, Macneale KH, Anulacion BF, Scholz NL, Stark JD (2015) Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff. Chemosphere 132(2015):213–219CrossRefGoogle Scholar
  41. Moore MT, Schulz R, Cooper CM, Smith S, Rodgers JH (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46(6):827–835Google Scholar
  42. Pailler J-Y, Guignard C, Meyer B, Iffly JF, Pfister L, Hoffmann L, Krein A (2009) Behaviour and fluxes of dissolved antibiotics, analgesics and hormones during flood events in a small heterogeneous catchment in the grand Duchy of Luxembourg. Water Air Soil Poll 203(1–4):79–98CrossRefGoogle Scholar
  43. Pal A, He Y, Jekel M, Reinhard M, Yew-Hoong GK (2014) Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 71:46–62CrossRefGoogle Scholar
  44. Passeport E, Benoit P, Bergheaud V, Coquet Y, Tournebize T (2011) Selected pesticides adsorption and desorption in substrates from artificial wetland and forest buffer. Environ Tox Chem 30(7):1669–1676CrossRefGoogle Scholar
  45. Passeport E, Tournebize J, Chaumont C, Guenne A, Coquet Y (2013) Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed. Chemosphere 91(9):1289–1296CrossRefGoogle Scholar
  46. Pirzadeh P, Nihlen C, Kylmä M (2015) Dagvatten i Helsingborgs stad: En undersökning av miljöfarliga ämnen (Stormwater in Helsinborg). County adminstration board Skåne, MalmöGoogle Scholar
  47. Poissant L, Beauvais C, Lafrance C, Deblois C (2008) Pesticides in fluvial wetlands catchments under intensive agricultural activities. Sci Total Environ 404(1):182–195CrossRefGoogle Scholar
  48. Randelovic A, Zhang K, Jacimovic N, McCarthy D, Deletic A (2016) Stormwater biofilter treatment model (MPiRe) for selected micro-pollutants. Water Res 89:180–191CrossRefGoogle Scholar
  49. Roseen RM, Ballestero TP, Houle JJ, Avellaneda P, Briggs J, Fowler G, Wildey R (2009) Seasonal performance variations for storm-water management systems in cold climate conditions. J Environ Eng 135(3):128–137CrossRefGoogle Scholar
  50. Scheurer M, Hess S, Lueddecke F, Sacher F, Guede H, Loeffler H, Gallert C (2015) Removal of micropollutants, facultative pathogens and antibiotic resistant bacteria in full-scale retention soil filter receiving combined sewer overflow. Environ Sci Process and Impacts 17(1):186–196CrossRefGoogle Scholar
  51. Schmitt N, Wanko A, Laurent J, Bois P, Molle P, Mosé R (2015) Constructed wetlands treating stormwater from separate sewer networks in a residential Strasbourg urban catchment area: Micropollutant removal and fate. J Environ Chem Eng 3(4):2816–2824CrossRefGoogle Scholar
  52. Stachel B, Holthuis J, Schulz W, Seitz W, Weber WH, Tegge K, Dobner I (2010) Treatment techniques and analysis of stormwater run-off from roads in Hamburg, Germany. Xenobiotics in the urban water cycle. Chapter Xenobiotics in the Urban Water Cycle, Volume 16 of the series Environmental Pollution, Springer, pp 445–461Google Scholar
  53. Stehle S, Elsaesser D, Gregoire C, Imfeld G, Niehaus E, Passeport E, Payraudeau S, Schafer RB, Tournebize J, Schulz R (2011) Pesticide Risk Mitigation by Vegetated Treatment Systems: A Meta-Analysis. J Environ Qual 40(4):1068–1080Google Scholar
  54. Strobel A, Schmid P, Segner H, Burkhardt-Holm P, Zennegg M (2016) Persistent organic pollutants in tissues of the white-blooded Antarctic fish Champsocephalus gunnari and Chaenocephalus aceratus. Chemosphere 161:555–562CrossRefGoogle Scholar
  55. Swedish EPA (2007) Vilka halter av miljöfarliga ämnen hittar vi i miljön? (Which concentrations of hazardous substances do we find in the environment?). StockholmGoogle Scholar
  56. Swedish EPA (2009) Vilka halter av miljöfarliga ämnen hittar vi i miljön? (Which concentrations of hazardous substances do we find in the environment?)Google Scholar
  57. Swedish EPA (2016) Högfluorerade ämnen (PFAS) och bekämpningsmedel (PFAS and pesticides)Google Scholar
  58. Terzakis S, Fountoulakis MS, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis AD, Kalogerakis N, Manios T (2008) Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere 72(2):141–149CrossRefGoogle Scholar
  59. Tondera K, Koenen S, Pinnekamp J (2013) Survey monitoring results on the reduction of micropollutants, bacteria, bacteriophages and TSS in retention soil filters. Water Sci Technol 68(5):1005–1012CrossRefGoogle Scholar
  60. Tournebize J, Chaumont C, Mander Ü (2017) Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol Eng 103:415–425CrossRefGoogle Scholar
  61. Tromp K, Lima AT, Barendregt A Verhoeven JTA (2012) Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. J Hazard Mater 203–204:290–298Google Scholar
  62. Tournebize J (2016). Chapitre V.3.5 Effets d’une retenue sur les pesticides. In: Impact cumulé des retenues d’eau sur le milieu aquatique. Expertise scientifique collective. Rapport complet de l’expertise (ed. Carluer N). Irstea Paris, pp V.47–V.64.
  63. Tournebize J, Passeport E, Chaumont C, Fesneau C, Guenne A, Vincent B (2013) Pesticide decontamination of surface waters as a wetland ecosystem service in agricultural landscapes. Ecol Eng 56:51–59CrossRefGoogle Scholar
  64. US EPA (2009) United States Environmental Protection Agency, Contaminant Candidate List 3, Accessed 1 June 2016
  65. Vallée R, Dousset S, Schott F-X, Pallez C, Ortar A, Cherrier R, Munoz J-F, Benoit M (2015) Do constructed wetlands in grass strips reduce water contamination from drained fields? Environ Poll 207:365–373CrossRefGoogle Scholar
  66. Van Buren MA, Watt WE, Marsalek J (1997) Removal of selected urban stormwater constituents by an on-stream pond. J Environ Plan Manage 40(1):5–18CrossRefGoogle Scholar
  67. Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20CrossRefGoogle Scholar
  68. Wangler T, Zuleeg S, Vonbank R, Bester K, Boller M, Carmeliet J, Burkhardt M (2012) Laboratory scale studies of biocide leaching from façade coatings. Build Environ 54:168–173CrossRefGoogle Scholar
  69. Weston DP, Chen D, Lydy MJ (2015) Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California. Sci Total Environ 527–528:18–25CrossRefGoogle Scholar
  70. Weyrauch P, Matzinger A, Pawlowsky-Reusing E, Plume S, von Seggern D, Heinzmann B, Schroeder K, Rouault P (2010) Contribution of combined sewer overflows to trace contaminant loads in urban streams. Wat Res 44(15):4451–4462CrossRefGoogle Scholar
  71. Wiberg K, McLachlan M, Jonsson P, Johansson N, Josefsson S, Knekta E, Persson Y, Sundqvist K, Armitage J, Broman D, Cornelissen G, Egebäck A, Sellström U, Cato I (2009) Sources, transport, reservoirs and fate of dioxins. PCBs and HCB in the Baltic sea environment, Swedish EPA, StockholmGoogle Scholar
  72. Winters N, Granuke K, McCall M (2015) Roofing materials assessment: Investigation of five metals in runoff from roofing materials. Water Environ Res 87(9):835–848CrossRefGoogle Scholar
  73. Zgheib S, Moilleron R, Chebbo G (2011a) Influence of the land use pattern on the concentrations and fluxes of priority pollutants in urban stormwater. Water Sci Technol 64(7):1450–1458CrossRefGoogle Scholar
  74. Zgheib S, Moilleron R, Saad M, Chebbo G (2011b) Partition of pollution between dissolved and particulate phases: What about emerging substances in urban stormwater catchments? Water Res 45(2):913–925CrossRefGoogle Scholar
  75. Zhang Z, Cui B Fan X (2012) Removal mechanisms of heavy metal pollution from urban runoff in wetlands. Front Earth Sci 6(4):433–444Google Scholar
  76. Zhang K, Randelovic A, Page D, McCarthy DT, Deletic A (2014) The validation of stormwater biofilters for micropollutant removal using in situ challenge tests. Ecol Eng 67:1–10Google Scholar
  77. Zhang K, Deletic A, Page D, McCarthy DT (2015) Surrogates for herbicide removal in stormwater biofilters. Water Res 81:64–71Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Katharina Tondera
    • 1
    • 2
    Email author
  • Godecke-Tobias Blecken
    • 3
  • Julien Tournebize
    • 4
  • Maria Viklander
    • 3
  • Heléne Österlund
    • 3
  • Alexandra Andersson Wikström
    • 3
  • Chris C. Tanner
    • 5
  1. 1.Institute of Environmental EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Stormwater Research GroupUniversity of the Sunshine CoastMaroochydoreAustralia
  3. 3.Urban Water Engineering, Luleå University of TechnologyLuleåSweden
  4. 4.Irstea—National Research Institute of Science and Technology for Environment and AgricultureAntonyFrance
  5. 5.National Institute of Water and Atmospheric ResearchHamiltonNew Zealand

Personalised recommendations