Skip to main content

Abstract

When nutrient loads are discharged into surface waters with variable stormwater and wastewater flows, surface water pollution is impaired. Nutrients can lead to oxygen depletion and eutrophication of surface waters, including excessive plant and algae growth. Popular examples of structures harmed by excessive nutrient inflow are the Baltic Sea or the Great Barrier Reef in Australia. Hence, removing nutrients, especially nitrogen and phosphorus compounds, is a major target when variable flows should be treated. This chapter gives an overview of the available removal mechanisms and the potential efficiencies of different treatment facilities. While particle-bound nutrients can be removed via sedimentation processes, dissolved nitrogen and phosphorus compounds cannot as they differ in their biochemical degradation: the adsorption capacity for nitrogen compounds is often renewable, whereas the uptake of phosphorus compounds is limited over time. Hence, treatment facilities need to be able to address the different requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Rubaei AM, Engström M, Viklander M, Blecken GT (2016) Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland Finally maturated or in need of maintenance? Ecol Eng 95:73–82

    Article  Google Scholar 

  • Ávila C, Reyes C, Bayona JM, García J (2013) Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. Water Res 47:315–325

    Article  Google Scholar 

  • Ayyasamy PM, Rajakumar S, Sathishkumar M, Swaminathan K, Shanthi K, Lakshmanaperumalsamy P, Lee S (2009) Nitrate removal from synthetic medium and groundwater with aquatic macrophytes. Desalination 242:286–296

    Google Scholar 

  • Bachand PAM, Horne AJ (1999) Denitrification in constructed free-water surface wetlands: II effects of vegetation and temperature. Ecol Eng 14(1–2):17–32

    Article  Google Scholar 

  • Berge D, Fjeld E, Hindar A, Kaste O (1997) Nitrogen retention in two Norwegian watercourses of different trophic status. Ambio 26:282–288

    Google Scholar 

  • Beutel MW, Newton CD, Brouillard ES, Watts RJ (2009) Nitrate removal in surface-flow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin. Wash Ecol Eng 35:1538–1546

    Article  Google Scholar 

  • Billen G, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Phil Trans R Soc B 368:20130123

    Article  Google Scholar 

  • Billy C, Birgand F, Ansart P, Peschard J, Sebilo M, Tournebize J (2013) Factors controlling nitrate concentrations in surface waters of an artificially drained agricultural watershed. Landscape Ecol 28:665–684

    Article  Google Scholar 

  • Birch GF, Matthai C, Fazeli MS, Suh J (2004) Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands 24(2):459–466

    Article  Google Scholar 

  • Blecken GT, Zinger Y, Deletic A, Fletcher TD, Hedström A, Viklander M (2010) Laboratory study on stormwater biofiltration: nutrient and sediment removal in cold temperatures. J Hydrol 394:507–514

    Article  CAS  Google Scholar 

  • Born W, Lambert B, Hohl E, Frechen FB, Hassinger R (2000) Bodenfilterbecken zur weitergehenden Mischwasserbehandlung. KA Wasserwirtschaft, Abwasser Abfall 47(1) (in German)

    Google Scholar 

  • Borne KE, Fassman-Beck EA, Tanner CC (2014) Floating treatment wetland influences on the fate of metals in road runoff retention ponds. Water Res 48:430–442

    Google Scholar 

  • Borne K, Tanner CC, Fassman-Beck E (2013) Stormwater nitrogen removal performance of a floating treatment wetland. Water Sci Tech 68(7):1657–1664

    Article  CAS  Google Scholar 

  • Borne KE (2014) Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol Eng 69:76–82

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Pearson Education, Upper Saddle River, NJ, USA

    Google Scholar 

  • Brandenburg KM, De Senerpont Domis LN, Wohlrab S, Krock B, John U, van Scheppingen Y, Van Donk E, Van de Waal DB (2017) Combined physical, chemical and biological factors shape Alexandrium ostenfeldii blooms in the Netherlands. Harmful Algae 63:146–153

    Article  CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35(5):11–17

    CAS  Google Scholar 

  • Burchell MR, Skaggs RW, Lee CR, Broome S, Chescheir GM, Osborne J (2007) Substrate organic matter to improve nitrate removal in surface-flow constructed wetlands. J Environ Qual 36:194–207

    Article  CAS  Google Scholar 

  • Chang N-B, Xuan Z, Marimon Z, Islam K, Wanielista MP (2013) Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecol Eng 54:66–76

    Google Scholar 

  • Chimney MJ, Pietro KC (2006) Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecol Eng 27(4):301–321

    Article  Google Scholar 

  • Collins KA, Lawrence TJ, Stander EK, Jontos RJ, Kaushale SS, Newcomer TA, Grimm NB, Cole Ekberg ML (2010) Opportunities and challenges for managing nitrogen in urban stormwater: a review and synthesis. Ecol Eng 36(11):1507–1519

    Article  Google Scholar 

  • Crumpton WG, Stenback GA, Miller BA, Helmers MJ (2006) Potential benefits of wetland filters for tile drainage systems: impact on nitrate loads to mississippi river sub-basins. US Department of Agriculture Project IOWO6682, IOWA State University, Ames, IA. http://www.fsa.usda.gov/Internet/FSA_File/fsa_final_report_crumpton_rhd.pdf. Accessed 07 Aug 2012

  • Davis AP, Hunt WF, Traver RG, Clar M (2009) Bioretention technology: overview of current practice and future needs. J Environ Eng 135(3):109–117

    Google Scholar 

  • Davis AP, Shokouhian M, Sharma H, Minami C (2006) Water quality improvement through bioretention media: nitrogen and phosphorus removal. Water Environ Res 78(3):284–293

    Article  CAS  Google Scholar 

  • Deletic A, Fletcher TD (2006) Performance of grass filters used for stormwater treatment—a field and modelling study. Hydrol 317:261–275

    Article  Google Scholar 

  • De Paula Filho FJ, Marins RV, De Lacerda LD (2015) Natural and anthropogenic emissions of N and P to the Parnaíba River Delta in NE Brazil. Estuar Coast Shelf Sci 166(1):34–44

    Article  Google Scholar 

  • Diaz FJ, O’Geen AT, Dahlgren RA (2012) Agricultural pollutant removal by constructed wetlands: implications for water management and design. Agric Water Manage 104:171–183

    Article  Google Scholar 

  • Dietz ME, Clausen JC (2006) Saturation to improve pollutant retention in a rain garden. Environ Sci Technol 40:1335–1340

    Article  CAS  Google Scholar 

  • Dittmer U (2006) Prozesse des Rückhaltes und Umsatzes von Kohlenstoff- und Stickstoffverbindungen in Retentionsbodenfiltern zur Mischwasserbehandlung (Processes and transformation of carbon and nitrogen compounds in retention soil filters for combined sewer overflow treatment). Dissertation, University of Kaiserslautern, Kaiserslautern. https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1825 (in German)

  • Domingos S, Boehler K, Felstead S, Dallas S, Ho G (2009) Effect of external carbon sources on nitrate removal in constructed wetlands treating industrial wastewater: woodchips and ethanol addition. In: Technologies and management for sustainable biosystems. Murdoch University, Australia. ISBN 978-1-60876-104-3

    Google Scholar 

  • FAWB (2008) Advancing the design of stormwater biofiltration. Report Facility for Advancing Water Biofiltration (FAWB). Monash University, Melbourne, Australia

    Google Scholar 

  • Felmeden J (2013) Phosphorrückhalt in der Mischwasserbehandlung durch Retentionsbodenfilteranlagen. Retention of Phosphorus during Treatment of Combined Sewage by Retention Soil Filters. Dissertation, Kassel University Press, Kassel (in German)

    Google Scholar 

  • Fisher J, Acreman MC (2004) Wetland nutrient removal: a review of the evidence. Hydrol Earth Sys Sci 8:673–685

    Article  CAS  Google Scholar 

  • Gasperi J, Zgheib S, Cladière M, Rocher V, Moilleron R, Chebbo G (2012) Priority pollutants in urban stormwater: part 2—case of combined sewers. Water Res 46:6693–6703

    Article  CAS  Google Scholar 

  • Griffin P (2003) Ten years experience of treating all flows from combined sewerage systems using package plant and constructed wetland combinations. Water Sci Technol 48:93–99

    CAS  Google Scholar 

  • Grotehusmann D, Lambert B, Fuchs S, Uhl M, Leutnant D (2017) Erhebungsuntersuchung zur Optimierung der Retentionsbodenfilter in NRW. (Investigation to optimise retention soil filters in NRW). Final report, Ministry for Environment, Nature Conservation, Agriculture and Consumer Protection of the German Federal State of North 289 Rhine-Westphalia (Ed.), Düsseldorf. https://www.lanuv.nrw.de/uploads/tx_mmkresearchprojects/Abschlussbericht_RBF_NRW.pdf (in German)

  • Guerra HB, Park K, Kim Y (2013) Empirical regression models for estimating nitrogen removal in a stormwater wetland during dry and wet days. Water Sci Technol 68(7):1641

    Google Scholar 

  • Hartshorn N, Marimon Z, Xuan ZM, Chang NB, Wanielista MP (2016) Effect of floating treatment wetlands on control of nutrients in three stormwater wet detention ponds. J Hydrol Eng 21(8):04016025-1–04016025-16

    Google Scholar 

  • Hatt BE, Deletic A, Fletcher TD (2007) Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes. Water Sci Technol 56:11–19

    Google Scholar 

  • Hatt BE, Fletcher TD, Deletic A (2009) Hydrologic and pollutant removal performance of biofiltration systems at field scale. J Hydrol 365:310–321

    Article  CAS  Google Scholar 

  • Headley T, Tanner CC (2006) Application of floating treatment wetlands for enhanced stormwater treatment: a review. Auckland Regional Council, Technical Report, New Zealand

    Google Scholar 

  • Henderson C, Greenway M, Phillips I (2007) Removal of dissolved nitrogen, phosphorus and carbon from stormwater by biofiltration mesocosms. Water Sci Technol 55(4):183–191

    Article  CAS  Google Scholar 

  • Herrmann J (2012) Chemical and biological benefits in a stormwater wetland in Kalmar, Sweden. Limnologica 42(4):299–309

    Article  CAS  Google Scholar 

  • Hernandez ME, Mitsch WJ (2007) Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. J Environ Qual 36:333–342

    Article  CAS  Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic ocean: natural and human influences. Biogeochem 35:75–139

    Article  CAS  Google Scholar 

  • Hsieh CH, Davis AP, Needelman BA (2007) Bioretention column studies of phosphorus removal from urban stormwater runoff. Water Environ Res 79(2):177–184

    Article  CAS  Google Scholar 

  • Huett DO, Morris SG, Smith G, Hunt N (2005) Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Res 39(14):3259–3272

    Article  CAS  Google Scholar 

  • Hunt WF, Jarrett AR, Smith JT, Sharkey LJ (2006) Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. J Irrig Drain Eng 132(6):600–608

    Article  Google Scholar 

  • Kasting U (2002) Reinigungsleistung von zentralen Anlagen zur Behandlung von Abflüssen stark befahrener Straßen. Dissertation, University of Kaiserslautern, Germany. https://kluedo.ub.uni-kl.de/files/1363/diss.pdf (in German)

  • Kim H, Seagren EA, Davis AP (2003) Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res 75(4):355–367

    Article  CAS  Google Scholar 

  • Kadlec RH (2012) Constructed marshes for nitrate removal. Crit Rev Environ Sci Technol 42:934–1005

    Article  CAS  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Kadlec RH, Reddy KR (2001) Temperature effects in treatment wetlands. Water Environ Res 73(5):543–557

    Article  CAS  Google Scholar 

  • Kovacic DA, Twait RM, Wallace MP, Bowling JM (2006) Use of created wetlands to improve water quality in the Midwest-Lake Bloomington case study. Ecol Eng 28:258–270

    Article  Google Scholar 

  • Lenhart HA, Hunt WF (2011) Evaluating four storm-water performance metrics with a North Carolina coastal plain storm-water wetland. J Environ Eng 137(2):155–162

    Article  CAS  Google Scholar 

  • Lenhart HA, Hunt WF, Burchell MR (2012) Harvestable nitrogen accumulation for five storm water wetland plant species: Trigger for storm water control measure maintenance? J Environ Eng 138(9):972–978

    Article  CAS  Google Scholar 

  • Li H, Davis AP (2009) Water quality improvement through reductions of pollutant loads using bioretention. J Environ Eng 135:567–576

    Article  CAS  Google Scholar 

  • Lin YF, Jing SR, Wang TW, Lee DY (2002) Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ Poll 119(3):413–420

    Article  CAS  Google Scholar 

  • Lu S, Hu H, Sun Y, Yang J (2009) Effect of carbon source on the denitrification in constructed wetlands. J Environ Sci 21:1036–1043

    Article  CAS  Google Scholar 

  • Lucke T, Kachchu MA, Tindale N (2014) Pollutant removal and hydraulic reduction performance of field grassed swales during runoff simulation experiments. Water 6:1887–1904

    Article  CAS  Google Scholar 

  • Lü YP (2011) Process simulation and watershed management for non-point source (NPS) Pollution in Tidal Plain with Dense River Network, China. Dissertation, Shanghai (China). (In Chinese with an English abstract). In: Yang K, Lü YP, Shang ZY (2013) Stormwater pollution and management initiatives in Shanghai. Proceedings of the 8th NOVATECH, Lyon, France

    Google Scholar 

  • Marsalek J, Urbonas B, Lawrence I (2005) Stormwater management ponds. In: Shilton A (ed) Pond Treatment Technology. IWA Publishing, London, UK

    Google Scholar 

  • Merriman LS, Hunt WF (2014) Maintenance versus maturation: constructed storm-water wetland’s fifth-year water quality and hydrologic assessment. J Environ Eng 140(10)

    Google Scholar 

  • McAndrew B, Ahn C, Spooner J (2016) Nitrogen and sediment capture of a floating treatment wetland on an urban stormwater retention pond—the case of the rain project. Sustainability 8(972):1–14

    Google Scholar 

  • Murray AG, Parslow JS (1999) Modeling of nutrient impacts in Port Philip Bay—a semi-closed marine Australian ecosystem. Mar Freshwater Res 50:597–611

    Article  CAS  Google Scholar 

  • Nichols P, Lucke T (2016) Field evaluation of the nutrient removal performance of a Gross Pollutant Trap (GPT) in Australia. Sustainability 8(7):669

    Article  Google Scholar 

  • Panasiuk O, Hedström A, Marsalek J, Ashley RM, Viklander M (2015) Contamination of stormwater by wastewater: a review of detection methods. J Environ Manage 152:241–250

    Article  CAS  Google Scholar 

  • Peterson IA, Igielski S, Davis AP (2015) Enhanced denitrification in bioretention using woodchips as an organic carbon source. J Sust Water Built Environ 1(2)

    Google Scholar 

  • Pulou J (2011) Les anciennes cressonnières de l’Essonne: Effets de la recolonisation des zones humides artificielles sur la dynamique de (The old water cress basins of Essonne: effects of the recolonization of constructed wetlands on nitrogen dynamics). Dissertation, AgroParisTech, Paris, France (in French)

    Google Scholar 

  • Pulou J, Tournebize J, Chaumont C, Haury J, Laverman AM (2012) Carbon availability limits potential denitrification in watercress farm sediment. Ecol Eng 49:212–220

    Article  Google Scholar 

  • Read J, Wevill T, Fletcher TD, Deletic A (2008) Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Res 42:893–902

    Article  CAS  Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a critical review. Crit Rev Environ Sci Technol 29(1):83–146

    Article  CAS  Google Scholar 

  • Ruppelt J, Tondera K, Pinnekamp J (2017) Using Floating treatment wetlands to treat highway runoff. In: Conference Proceedings, WETPOL 2017, August 21–25, 2017, Montana, USA

    Google Scholar 

  • Rustige H, Nolde E (2007) Nitrogen elimination from landfill leachates using an extra carbon source in subsurface flow constructed wetlands. Water Sci Technol 56(3):125–133

    Article  CAS  Google Scholar 

  • Saeed T, Sun GZ (2011) Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands. Water Res 45(10):3137–3152

    Article  CAS  Google Scholar 

  • Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht G, Dumont E, Fekete BM, Garnier J, Harrison JA (2010) Global river nutrient export: a scenario analysis of past and future trends. Glob. Biogeochem Cycles 24 (GB0A08)

    Google Scholar 

  • Semadeni-Davies A (2006) Winter performance of an urban stormwater pond in southern Sweden. Hydrol Processes 20:165–182

    Article  CAS  Google Scholar 

  • Tanner CC, Sukias JPS (2011) Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures. J Environ Qual 40(2):620–633

    Article  CAS  Google Scholar 

  • Tanner CC, Kadlec RH (2013) Influence of hydrological regime on wetland attenuation of diffuse agricultural nitrate losses. Ecol Eng 56:79–88

    Article  Google Scholar 

  • Taylor GD, Fletcher TD, Wong THF, Breen PF, Duncan HP (2005) Nitrogen composition in urban runoff–implications for stormwater management. Water Res 39(10):1982

    Google Scholar 

  • Terzakis S, Fountoulakis MS, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis AD, Kalogerakis N, Manios T (2008) Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere 72(2):141–149

    Article  CAS  Google Scholar 

  • Tondera (2017) Evaluating the performance of large-scale constructed wetlands for the treatment of combined sewer overflows. Ecol Eng. doi:10.1016/j.ecoleng.2017.10.009

  • Tondera K, Koenen S, Stappert U, Dahmen H, Pinnekamp J (2013) Combined sewer overflow treatment: removal of oxygen depleting parameters via retention soil filters. In: 8th NOVATECH, 23–26 June 2013, Lyons, France

    Google Scholar 

  • Tournebize J, Gramaglia C, Birmant F, Bouarfa S, Chaumont C, Vincent B (2012) Co-design of constructed wetlands to mitigate pesticide pollution in a drained catch-basin: a solution to improve groundwater quality. Irrig Drainage 61:75–86

    Article  Google Scholar 

  • Tournebize J, Chaumont C, Fesneau C, Guenne A, Vincent B, Garnier J, Mander Ü (2015) Long-term nitrate removal in a buffering pond-reservoir system receiving water from an agricultural drained catchment. Ecol Eng 80:32–45

    Article  Google Scholar 

  • Tournebize J, Chaumont C, Mander Ü (2017) Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol Eng 103:415–425

    Article  Google Scholar 

  • Van de Moortel AMK, Du Laing G, De Pauw N, Tack FMG (2011) Distribution and mobilization of pollutants in the sediment of a constructed floating wetland used for treatment of combined sewer overflow. Water Environ Res 83(5):427–439

    Article  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65

    Article  CAS  Google Scholar 

  • Vymazal J, Greenway M, Tonderski K, Brix H, Mander U (2006) Constructed wetlands for wastewater treatment. Wetlands Nat Resour Manage 190:69–96

    Article  Google Scholar 

  • Waldhoff A (2008) Hygienisierung von Mischwasser in Retentionsbodenfiltern (RBF) (Sanitation of combined water in retention soil filters). Dissertation, Kassel. http://www.uni-Kassel.de/upress/online/frei/978-3-89958-606-0.volltext.frei.pdf (in German)

  • Walker C, Tondera K, Lucke T (2017) Stormwater Treatment evaluation of a constructed floating wetland after two years operation in an urban catchment. Sustainability 9(10):1687

    Google Scholar 

  • Wang CY, Sample DJ, Bell C (2014) Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds. Sci Total Environ 499(1):384–393

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ Int 30(5):685–700

    Article  CAS  Google Scholar 

  • Winston RJ, Hunt WF, Kennedy SG, Wright JD, Lauffer MS (2012) Field evaluation of storm-water control measures for highway runoff treatment. J Environ Eng 138(1):101–111

    Article  CAS  Google Scholar 

  • Winston RJ, Hunt WF, Kennedy SG, Merriman LS, Chandler J, Brown D (2013) Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecol Eng 54:254–265

    Article  Google Scholar 

  • Woźniak R (2008) Ermittlung von Belastungsgrenzen an Bodensubstraten zur weitergehenden Mischwasserbehandlung in Retentionsbodenfiltern (Determination of loading limitations on filter materials for enhanced treatment of CSOs in retention soil filters). Dissertation, University Kaiserslautern

    Google Scholar 

  • Wu S, Kuschk P, Brix H, Vymazal J, Dong R (2014) Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res 57:40–55

    Article  CAS  Google Scholar 

  • Yin H, Lu Y, Xu Z, Li H, Schwegler BR (2017) Characteristics of the overflow pollution of storm drains with inappropriate sewage entry. Environ Sci Pollut Res 24:4902–4915

    Article  Google Scholar 

  • Yu SL, Kuo JT, Fassman EA, Pan H (2001) Field test of grassed-swale performance in removing runoff pollution. J Water Resour Plan Manag 127(3):168–171

    Google Scholar 

  • Zhang W, Li T (2015) Particle size distributions in combined sewer overflows in a high intensity urban catchment in Shanghai, China. Desalin Water Treat 56:655–664

    Article  CAS  Google Scholar 

  • Zinger Y, Blecken GT, Fletcher TD, Viklander M, Deletic A (2013) Optimising nitrogen removal in existing stormwater biofilters: Benefits and tradeoffs of a retrofitted saturated zone. Ecol Eng 51:75–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Tondera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tondera, K., Blecken, GT., Tournebize, J., Mander, Ü., Tanner, C.C. (2018). Nutrient Removal from Variable Stormwater Flows. In: Tondera, K., Blecken, GT., Chazarenc, F., Tanner, C. (eds) Ecotechnologies for the Treatment of Variable Stormwater and Wastewater Flows. SpringerBriefs in Water Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70013-7_3

Download citation

Publish with us

Policies and ethics