Bridging the Gap in Personalised Medicine Through Data Driven Genomics

  • Ummul Hanan MohamadEmail author
  • Mohamad Taha Ijab
  • Rabiah Abdul Kadir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10645)


Personalised medicine has been visualised as the ultimate healthcare practise, as the treatment will be customised to the patient’s need. This will eliminate the “one-for-all” approach, thus reducing the potential drug’s side effects, ineffective drug doses and severe complications due to unsuitable drugs prescribed. As the cost for genomics sequencing started to plummet, this condition has driven extensive studies on many disease genomics, generating genomics big data. However, without an in-depth analysis and management of the data, it will be difficult to reveal and relate the link between the genomics with the diseases in order to accomplish personalised medicine. The main reason behind this is that genomics data has never been straightforward and is poorly understood. Therefore, this paper purposely discusses how the advances in technology have aid the understanding of genomics big data, thus a proposed framework is highlighted to help change the landscape of personalised medicine.


Big data Personalised medicine Data driven genomics 


  1. 1.
    Grossglauser, M., Saner, H.: Data-driven healthcare: from patterns to actions. Eur. J. Prev. Cardiol. 21, 14–17 (2014)CrossRefGoogle Scholar
  2. 2.
    Jain, K.: Textbook of Personalized Medicine (2015)Google Scholar
  3. 3.
    Bielinski, S., Olson, J., Pathak, J.: Preemptive Genotyping for Personalized Medicine: Design of the Right Drug, Right Dose, Right Time—Using Genomic Data to Individualize Treatment Protocol. Mayo Clinic, Rochester (2014)Google Scholar
  4. 4.
    Alyass, A., Turcotte, M., Meyre, D.: From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med. Genom. 8, 33 (2015)CrossRefGoogle Scholar
  5. 5.
    O’Driscoll, A., Daugelaite, J., Sleator, R.: “Big data”, Hadoop and cloud computing in genomics. J. Biomed. Inform. 46, 774–781 (2013)CrossRefzbMATHGoogle Scholar
  6. 6.
    Jameson, J., Longo, D.: Precision medicine—personalized, problematic, and promising. Obstet. Gynecol. Surv. 70, 612–614 (2015)CrossRefGoogle Scholar
  7. 7.
    The cancer genome atlas pan-cancer analysis project. Nature (2013)Google Scholar
  8. 8.
    Ng, M., Shriner, D., Chen, B., Li, J., Chen, W.: Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Gen. 10, e1004517 (2014)CrossRefGoogle Scholar
  9. 9.
    Wilson, B., Nicholls, S.: The Human Genome Project, and recent advances in personalized genomics. Risk Manag. Healthc. Policy 8, 9 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhang, W., Ng, H., Shu, M., Luo, H., Su, Z., Ge, W.: Comparing genetic variants detected in the 1000 genomes project with SNPs determined by the International HapMap Consortium. J. Genet. 94, 731–740 (2015)CrossRefGoogle Scholar
  11. 11.
    Offit, K.: Personalized medicine: new genomics, old lessons. Hum. Genet. 130, 3–14 (2011)CrossRefGoogle Scholar
  12. 12.
    Muir, P., Li, S., Lou, S., Wang, D.: The real cost of sequencing: scaling computation to keep pace with data generation. Genome 17, 53 (2016)Google Scholar
  13. 13.
    Tung, N., Battelli, C., Allen, B., Kaldate, R., Bhatnagar, S.: Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 121, 25–33 (2015)CrossRefGoogle Scholar
  14. 14.
    Cooke, T., Reeves, J., Lanigan, A., Stanton, P.: HER2 as a prognostic and predictive marker for breast cancer. Ann. Oncol. 12, S23–S28 (2001)CrossRefGoogle Scholar
  15. 15.
    Jennings, J.L., Hudson, T.J.: International Cancer Genome Consortium (ICGC). Cancer Res. 76, 130 (2016)CrossRefGoogle Scholar
  16. 16.
    Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A.: Data integration and genomic medicine. J. Biomed. 28, 5–16 (2007)Google Scholar
  17. 17.
    Khatri, P., Draghici, S.: Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21, 3587–3595 (2005)CrossRefGoogle Scholar
  18. 18.
    Merelli, I., Pérez-Sánchez, H., Gesing, S.: Managing, analysing, and integrating big data in medical bioinformatics: open problems and future perspectives. BioMed Res. (2014)Google Scholar
  19. 19.
    Alzu’bi, A., Zhou, L., Watzlaf, V.: Personal genomic information management and personalized medicine: challenges, current solutions, and roles of HIM professionals. Perspect. Health Inf. Manag. 11, 1c (2014)Google Scholar
  20. 20.
    Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B.: Bioinformatics challenges for personalized medicine. Bioinformatics 27, 1741–1748 (2011)CrossRefGoogle Scholar
  21. 21.
    Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical? PLoS Biol. 13, e1002195 (2015)CrossRefGoogle Scholar
  22. 22.
    Dove, E.S., Joly, Y., Tassé, A.-M.: Genomic cloud computing: legal and ethical points to consider. Eur. J. Hum. Genet. 23, 1271–1278 (2015)CrossRefGoogle Scholar
  23. 23.
    Heath, A.P., Greenway, M., Powell, R., Spring, J., Suarez, R., Hanley, D., Bandlamudi, C., McNerney, M.E., White, K.P., Grossman, R.L.: Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets. J. Am. Med. Inform. Assoc. 21, 969–975 (2014)CrossRefGoogle Scholar
  24. 24.
    Deorowicz, S., Danek, A., Niemiec, M.: GDC 2: compression of large collections of genomes. Sci. Rep. 5, 11565 (2015)CrossRefGoogle Scholar
  25. 25.
    Madden, T.: The BLAST sequence analysis tool (2013)Google Scholar
  26. 26.
    Subhani, M., Anjum, A., Koop, A.: Clinical and genomics data integration using meta-dimensional approach. In: Proceedings of the 9th International Conference on Utility and Cloud Computing, pp. 416–421 (2016)Google Scholar
  27. 27.
    Beck, M., Haupt, V., Roy, J., Moennich, J., Jäkel, R.: Genecloud: secure cloud computing for biomedical research. In: Krcmar, H., Reussner, R., Rumpe, B. (eds.) Trusted Cloud Computing. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-12718-7_1
  28. 28.
    Directors, A.B.: Laboratory and clinical genomic data sharing is crucial to improving genetic health care: a position statement of the American College of Medical Genetics. Genet. Med. (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ummul Hanan Mohamad
    • 1
    Email author
  • Mohamad Taha Ijab
    • 1
  • Rabiah Abdul Kadir
    • 1
  1. 1.Institute of Visual InformaticsUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations