Hybrid Improved Bacterial Swarm (HIBS) Optimization Algorithm

  • K. Shanmugasundaram
  • A. S. A. MohamedEmail author
  • N. I. R. Ruhaiyem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10645)


This paper proposed a hybrid improved bacterial swarm optimization (HIBS) algorithm by combining bacterial foraging optimization algorithm (BFO) with particle swarm optimization (PSO) to improve the performance of the classical BFO algorithm. Adaptive step size is introduced instead of fixed step size by random walk of the Fire Fly Algorithm (FFA) in the tumble move of the bacterium at the chemo-taxis stage of BFO. So that, the slow convergence of the BFO algorithm is mitigated. PSO algorithm is acted as mutation operator to attain the global best. So, the trapping out in the local optima by PSO is being avoided. BFO algorithm is used to attain the local best optimality. The new algorithm is tested on a set of benchmark functions. The proposed hybrid algorithm is compared with the original BFO and PSO algorithm. It has been proved that the proposed algorithm shows the significance than the classical BFO and PSO algorithms.


Adaptive step size Bacterial Foraging Optimization Particle Swarm Optimization Fire Fly Algorithm 



The author wish to thank Universiti Sains Malaysia for the support it has extended in the completion of the present research through Short Term University Grant No. 304/PKOMP/6313280.


  1. 1.
    Alostaz, A., Alhanjouri, M.: A new adaptive BFO based on PSO for learning neural network. i-Manager’s J. Comput. Sci. 1, 9 (2013)Google Scholar
  2. 2.
    Bakwad, K.M., Patnaik, S.S., et al.: Hybrid bacterial foraging with parameter free PSO. In: IEEE World Congress on Nature and Biologically Inspired Computing (2009)Google Scholar
  3. 3.
    Kevin, M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. (2002)Google Scholar
  4. 4.
    Biswas, A., Das, S., Abraham, A.: Synergy of PSO and bacterial foraging optimization: a comparative study on numerical benchmarks. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.) Innovations in Hybrid Intelligent Systems. ASC, vol. 44, pp. 255–263. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74972-1_34 CrossRefGoogle Scholar
  5. 5.
    Jarraya, Y., Bouaziz, S., Alimi, A.M., Abraham, A.: A hybrid computational chemotaxis in bacterial foraging optimization algorithm for global numerical optimization. In: IEEE International Conference on Cybernetics, pp. 213–218 (2003)Google Scholar
  6. 6.
    Kora, P., Kalva, S.R.: Hybrid bacterial foraging and particle swarm optimization for detecting Bundle Branch Block. SpringerPlus 4(1), 481 (2015)CrossRefGoogle Scholar
  7. 7.
    Kumar, S., Sing, S.K.: Hybrid BFO and PSO Swarm Intelligence Approach for Biometric Feature Optimization, Nature-Inspired Computing Concepts, Methodologies, Tools, and Applications. IGI Global, Hershey (2017)Google Scholar
  8. 8.
    Yan, X., Zhu, Y., Chen, H., Zhang, H.: Improved bacterial foraging optimization with social cooperation and adaptive step size. In: Huang, D.-S., Jiang, C., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2012. LNCS, vol. 7389, pp. 634–640. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31588-6_81 CrossRefGoogle Scholar
  9. 9.
    Daas, M.S., Chikhi, S., Batouche, M.: Bacterial foraging optimization with double role of reproduction and step adaptation. In: Proceedings of International Conference on Intelligent Information Processing, Security and Advanced Communication, vol. 71. ACM (2015)Google Scholar
  10. 10.
    Hanmandlu, M., Kumar, A., Madasu, V.K., Yarlagadda, P.: Fusion of hand based biometrics using particle swarm optimization. In: 5th International Conference on Information Technology: New Generations, pp. 783–788. IEEE (2008)Google Scholar
  11. 11.
    Cherifi, et al.: Multimodal score-level fusion using hybrid GA-PSO for multibiometric system. Informatica 39, 209–216 (2015)Google Scholar
  12. 12.
    Datta, T., et al.: Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence. Prog. Electromagn. Res. 1, 143–157 (2008)CrossRefGoogle Scholar
  13. 13.
    Chen, C.-H., et al.: Hybrid of bacterial foraging optimization and particle swarm optimization for evolutionary neural fuzzy classifier. Int. J. Fuzzy Syst. 16, 422–433 (2014)Google Scholar
  14. 14.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04944-6_14 CrossRefGoogle Scholar
  15. 15.
    Mao, L., et al.: Particle swarm and bacterial foraging inspired hybrid artificial bee colony algorithm for numerical function optimization. Math. Probl. Eng. (2016)Google Scholar
  16. 16.
    Kumar, A., et al.: A new framework for adaptive multimodal biometrics management. IEEE Trans. Inf. Forensics Secur. 5, 92–102 (2010)CrossRefGoogle Scholar
  17. 17.
    Kumar, A., et al.: Adaptive management of multimodal biometrics fusion using ant colony optimization. Inf. Fusion 32, 49–63 (2016)CrossRefGoogle Scholar
  18. 18.
    Kennedy, J., Kennedy, J.F., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, Burlington (2001)Google Scholar
  19. 19.
    Hanmandlu, M., Kumar, A., Madasu, V.K., Yarlagadda, P.: Fusion of hand based biometrics using particle swarm optimization. In: Fifth International Conference on Information Technology: New Generations, pp. 783–788. IEEE (2008)Google Scholar
  20. 20.
    Kora, P., Krishna, K.S.R.: Hybrid firefly and particle swarm optimization algorithm for the detection of Bundle Branch Block. Int. J. Cardiovasc. Acad. 2, 44–48 (2016)CrossRefGoogle Scholar
  21. 21.
    Ruhaiyem, N.I.R., Mohamed, A.S.A., Belaton, B.: Optimized segmentation of cellular tomography through organelles’ morphology and image features. J. Telecommun. Electron. Comput. Eng. (JTEC) 8(3), 79–83 (2016)Google Scholar
  22. 22.
    Thevar, V.V., Ruhaiyem, N.I.R.: Concept, theory and application: hybrid watershed classic and active contour for enhanced image segmentation. In: Visual Informatics International Seminar (2016)Google Scholar
  23. 23.
    Ruhaiyem, N.I.R.: Semi-automated cellular tomogram segmentation workflow (CTSW): towards an automatic target-scoring system. In: Proceedings of International Conference on Computer Graphics, Multimedia and Image Processing (CGMIP 2014), Kuala Lumpur, Malaysia, pp. 38–48 (2014)Google Scholar
  24. 24.
    Ruhaiyem, N.I.R., Boundary-based versus region-based approaches for cellular tomography segmentation. In: Proceedings of 1st International Engineering Conference (IEC 2014), Erbil, Iraq, pp. 260–267 (2014)Google Scholar
  25. 25.
    Ruhaiyem, N.I.R.: Multiple, object-oriented segmentation methods of mammalian cell tomograms, Ph.D. Thesis, Institute for Molecular Bioscience, The University of Queensland (2014) doi: 10.14264/uql.2014.554

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • K. Shanmugasundaram
    • 1
  • A. S. A. Mohamed
    • 1
    Email author
  • N. I. R. Ruhaiyem
    • 1
  1. 1.School of Computer SciencesUniversiti Sains Malaysia (USM)GelugorMalaysia

Personalised recommendations