Advertisement

Visualization Principles for Facilitating Strategy Development Process in the Organization

  • Suraya Ya’acobEmail author
  • Nazlena Mohamad Ali
  • Hai-Ning Liang
  • Norziha Megat Zainuddin
  • Nor Shita Mat Nayan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10645)

Abstract

Visualization is essential to facilitate human cognitive activities especially to handle information complexities. There is a huge effort to develop various kind of visualization tools in order to facilitate human cognitive activities in the organization. One of the major activity in the organization is the strategy development process (SDP). This activity often involves complex cognitive activities (CCA) and always happen in the collaborative settings in the organization. Therefore, it is essential for visualization to facilitate SDP from Collaborative-CCA perspectives. In order to do that, this paper intend to highlight three visualization principles that able to facilitate SDP in the organization. Using the systemic view as a fundamental, the visualization principles are; (i) higher level visual structure, (ii) lower level visual structure, and (iii) the interconnection between higher and lower level visual structure. Consequently, by applying focus group observation, this paper demonstrates the usefulness of the visualization principles in facilitating SDP. Finally, this research will further evaluate and consult current visualization techniques, methods and tools in facilitating SDP.

Keywords

Visualization Knowledge Visualization Strategy Strategy Development Process Complex Cognitive Activities Collaboration 

References

  1. 1.
    Yee, J., Walker, A., Menzfield, L.: The use of design visualisation methods to support decision making. In DS 70: Proceedings of 12th International Design Conference on DESIGN 2012, Dubrovnik, Croatia (2012)Google Scholar
  2. 2.
    Platts, K., Eppler, M.: A framework for visualisation in the strategy process. In: Proceedings of 13th International Conference on Industry Engineering and Management Systems, Graz, Austria (2007) doi: 10.1016/j.lrp.2008.11.005
  3. 3.
    Bresciani, S., Blackwell, A.F., Eppler, M.: A collaborative dimensions framework: understanding the mediating role of conceptual visualizations in collaborative knowledge work. In: Proceedings of 41st Annual Hawaii International Conference on System Sciences, p. 364. IEEE (2008)Google Scholar
  4. 4.
    Hundhausen, C.D.: Evaluating visualization environments: cognitive, social and cultural perspectives. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 115–145. Springer, Heidelberg (2014). doi: 10.1007/978-1-4614-7485-2 CrossRefGoogle Scholar
  5. 5.
    Eppler, M.J., Burkhard, R.A.: Knowledge visualization. Università della Svizzera italiana (2004). doi: 10.3929/ethz-a-005004486
  6. 6.
    Kernbach, S., Eppler, M.J., Bresciani, S.: The use of visualization in the communication of business strategies: an experimental evaluation. Int. J. Bus. Commun. 52(2), 164–187 (2015). doi: 10.1109/IV.2010.55 CrossRefGoogle Scholar
  7. 7.
    Sedig, K., Parsons, P., Dittmer, M., Haworth, R.: Human-centered interactivity of visualization tools: micro- and macro-level considerations. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 717–743. Springer, New York (2014). doi: 10.1007/978-1-4614-7485-2 CrossRefGoogle Scholar
  8. 8.
    Schleicher, D.J., McConnell, A.R.: The complexity of self–complexity: an associated systems theory approach. Soc. Cogn. 23(5), 387–416 (2005). doi:10.1.1.669.6203CrossRefGoogle Scholar
  9. 9.
    Krathwohl, D.R.: A revision of Bloom’s taxonomy: an overview. Theory Pract. 41(4), 212–218 (2002). doi: 10.1207/s15430421tip4104_2 CrossRefGoogle Scholar
  10. 10.
    Ya’acob, S., Ali, N.M., Nayan, N.M.: Systemic visual structures: design solution for complexities of big data interfaces. In: Badioze Zaman, H., Robinson, P., Smeaton, A.F., Shih, T.K., Velastin, S., Jaafar, A., Mohamad Ali, N. (eds.) IVIC 2015. LNCS, vol. 9429, pp. 25–37. Springer, Cham (2015). doi: 10.1007/978-3-319-25939-0_3 CrossRefGoogle Scholar
  11. 11.
    Isenberg, P., Elmqvist, N., Scholtz, J., Cernea, D., Ma, K.L., Hagen, H.: Collaborative visualization: definition, challenges, and research agenda. Inf. Visual. 10(4), 310–326 (2011). doi: 10.1177/1473871611412817 CrossRefGoogle Scholar
  12. 12.
    Mengis, J., Eppler, M.J.: Understanding and managing conversations from a knowledge perspective: an analysis of the roles and rules of face-to-face conversations in organizations. Org. Stud. 29(10), 1287–1313 (2008)CrossRefGoogle Scholar
  13. 13.
    Ya’acob, S., Ali, N.M., Nayan, N.M.: Handling emergence of dynamic visual representation design for complex activities in the collaboration. Jurnal Teknologi 78(9–3), 1–11 (2016). doi: 10.11113/jt.v78.9713 Google Scholar
  14. 14.
    Kolfschoten, G.L., Brazier, F.M.: Cognitive load in collaboration: convergence. Group Decis. Negotiat. 22(5), 975–996 (2013). Springer. doi: 10.1109/HICSS.2012.156
  15. 15.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE Symposium on Visual Languages, pp. 336–343 (1996). doi: 10.1109/VL.1996.545307
  16. 16.
    Hornbæk, K., Hertzum, M.: The notion of overview in information visualization. Int. J. Hum.-Comput. Stud. 69(7), 509–525 (2011). doi: 10.1016/j.ijhcs.2011.02.007 CrossRefGoogle Scholar
  17. 17.
    Corning, P.A.: The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002). doi: 10.1002/cplx.10043 CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mengis, J.: Integrating knowledge through communication-the case of experts and decision makers. In: Proceedings of OKLC, pp. 699–720 (2007). doi: 10.1007/978-3-319-02958-0_29
  19. 19.
    A Systems Thinking Model: The Iceberg. https://www.nwei.org/iceberg/. Accessed June 2016
  20. 20.
    Ziemkiewicz, C., Kosara, R.: Implied dynamics in information visualization. In: Proceedings of International Conference on Advanced Visual Interfaces, pp. 215–222. ACM (2010). doi: 10.1145/1842993.1843031
  21. 21.
    Ziemkiewicz, C., Kosara, R.: Embedding information visualization within visual representation. In: Ras, Z.W., Ribarsky, W. (eds.) Advances in Information and Intelligent Systems. SCI, vol. 251, pp. 307–326. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04141-9_15 CrossRefGoogle Scholar
  22. 22.
    Paas, F., Renkl, A., Sweller, J.: Cognitive load theory and instructional design: recent developments. Educ. Psychol. 38(1), 1–4 (2003). doi: 10.1207/S15326985EP3801_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Suraya Ya’acob
    • 1
    Email author
  • Nazlena Mohamad Ali
    • 2
  • Hai-Ning Liang
    • 3
  • Norziha Megat Zainuddin
    • 1
  • Nor Shita Mat Nayan
    • 2
  1. 1.Advanced Informatics SchoolUniversiti Teknologi MalaysiaKuala LumpurMalaysia
  2. 2.Institut Visual InformatikUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Department of Computer Science and Software EngineeringXi’an Jiaotong Liverpool UniversitySuzhouChina

Personalised recommendations