Advertisement

Predicting Traffic Flow Based on Average Speed of Neighbouring Road Using Multiple Regression

  • Bagus PriambodoEmail author
  • Azlina Ahmad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10645)

Abstract

The prediction of traffic flow is a challenge. There are many factors that can affect traffic flow. One of the factors is an inter path relationship between neighbouring roads. For example, an individual incidents (such as accidents) may cause ripple effects (a cascading failure) which then spreads and creates a sustained traffic jam the neighbouring area. To know the relationship between road segments we propose multiple regression method to predict the traffic based on the nearby surrounding roads. The prediction factor is chosen from a high-relation road with the path to be searched. To know the relationship between roads we calculate their correlation among neighbouring roads. The results are then displayed on the map for further observation. From this study, we demonstrate that multiple regression method can be used to predict impact of speed of vehicles on neighbouring roads on traffic flows.

Keywords

Traffic flow prediction Multiple regressions Traffic flow propagation 

References

  1. 1.
    Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16, 653–662 (2015). doi: 10.1109/TITS.2014.2337238 Google Scholar
  2. 2.
    Ahn, J., Ko, E., Kim, E.Y.: Highway traffic flow prediction using support vector regression and Bayesian classifier. In: 2016 International Conference on Big Data Smart Computing, pp. 239–244 (2016). doi: 10.1109/BIGCOMP.2016.7425919
  3. 3.
    Anwar, A., Nagel, T., Ratti, C.: Traffic origins: a simple visualization technique to support traffic incident analysis. IEEE Pacific Visualization Symposium, pp. 316–319 (2014). doi: 10.1109/PacificVis.2014.35
  4. 4.
    Cai, H., Yan, L., Zhu, D.: Traffic Safety Level in China, pp. 363–369 (2015)Google Scholar
  5. 5.
    Chan, K.Y., Dillon, T.S.: Traffic flow prediction using orthogonal arrays and Takagi-Sugenoneural fuzzy models (2014)Google Scholar
  6. 6.
    Dai, H., Yang, Z.: Real-time traffic volume estimation with fuzzy linear regression. In: 2006 6th World Congress on Intelligent Control and Automation, pp. 3164–3167 (2006). doi: 10.1109/WCICA.2006.1712950
  7. 7.
    Dong, H., Jia, L., Sun, X., Li, C., Qin, Y.: Road traffic flow prediction with a time-oriented ARIMA model, pp. 1649–1652 (2009). doi: 10.1109/NCM.2009.224
  8. 8.
    Hu, C., Xie, K., Song, G., Wu, T.: Hybrid process neural network based on spatio-temporal similarities for short-term traffic flow prediction, pp. 253–258 (2008)Google Scholar
  9. 9.
    Hu, W., Yan, L., Wang, H.: Traffic jams prediction method based on two-dimension cellular automata model (2014)Google Scholar
  10. 10.
    Kumar, K., Parida, M., Katiyar, V.K.: Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia - Soc. Behav. Sci. 104, 755–764 (2013). doi: 10.1016/j.sbspro.2013.11.170 CrossRefGoogle Scholar
  11. 11.
    Lee, J., Hong, B., Lee, K., Jang, Y.-J.: A prediction model of traffic congestion using weather data. In: 2015 IEEE International Conference on Data Science and Data Intensive Data Science and Data Intensive Systems, pp. 81–88 (2015). doi: 10.1109/DSDIS.2015.96
  12. 12.
    Lee, K., Hong, B., Jeong, D., Lee, J.: Congestion pattern model for predicting short-term traffic decongestion times. In: 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, pp. 2828–2833 (2014). doi: 10.1109/ITSC.2014.695814313
  13. 13.
    Wang, Y., Cao, J., Li, W., Gu, T.: Mining traffic congestion correlation between road segments on GPS trajectories. In: 2016 IEEE International Conference Smart Computing, SMARTCOMP 2016 (2016). doi: 10.1109/SMARTCOMP.2016.7501704
  14. 14.
    Wang, Z., Lu, M., Yuan, X., Zhang, J., Van De Wetering, H.: Visual traffic jam analysis based on trajectory data. IEEE Trans. Vis. Comput. Graph. 19, 2159–2168 (2013)CrossRefGoogle Scholar
  15. 15.
    Xiong, W., Yu, Z., Eeckhout, L., Bei, Z., Zhang, F., Xu, C.: SZTS: a novel big data transportation system benchmark suite. In: Proceedings of the International Conference on Parallel Process, pp. 819–828, December 2015. doi: 10.1109/ICPP.2015.91
  16. 16.
    Zhang, R., Shu, Y., Yang, Z., Cheng, P., Chen, J.: Hybrid traffic speed modeling and prediction using real-world data. In: 2015 Proceeding of IEEE International Congress on Big Data, BigData Congress 2015, pp. 230–237 (2015). doi: 10.1109/BigDataCongress.2015.40
  17. 17.
    Tönjes, R., Barnaghi, P., Ali, M., Mileo, A., Hauswirth, M., Ganz, F., Ganea, S., Kjærgaard, B., Kuemper, D., Nechifor, S., Puiu, D., Sheth, A., Tsiatsis, V., Vestergaard, L.: Real time IoT stream processing and large-scale data analytics for smart city applications. Poster Session European Conference on Networks and Communications (2014)Google Scholar
  18. 18.
    Bischof, S., Karapantelakis, A., Nechifor, C.-S., Sheth, A., Mileo, A., Barnaghi, P.: Semantic modeling of smart city data. Position Paper in W3C Workshop on the Web of Things: Enablers and Services for an Open Web of Devices, 25–26 June 2014, Berlin, Germany (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Visual InformaticsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Information SystemUniversitas Mercu BuanaJakartaIndonesia

Personalised recommendations