Advertisement

Review on Data Driven Preliminary Study Pertaining to Assistive Digital Learning Technologies to Support Dyscalculia Learners

  • Kohilah MiundyEmail author
  • Halimah Badioze Zaman
  • Aliimran Nordin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10645)

Abstract

Dyscalculia is a specific learning disability amongst learners in underachievement of learning Mathematics, which begins in childhood and is persistent through adulthood. The population of dyscalculia is estimated to range between 3% and 6% of the world population, including Malaysia. In this preliminary study, we highlight a data driven approach, through literature content analysis and interviews conducted upon teachers, to analyse the different terms used on dyscalculia, and the effectiveness of computer-based technologies or assistive learning technologies, which are developed and used for learners with learning problems in mathematics for the past two decades. Current studies show an increasing interest in adopting Augmented Reality (AR) technology in education, and in optimisming to create unique educational setting for special education learners, specifically Dyscalculia learners, to enable them to undergo experiential learning by experiencing learning through the real world, mixed with virtual objects without losing their sense of reality.

Keywords

Dyscalculia Acalculia Assistive digital learning technologies Augmented Reality 

References

  1. 1.
    Ruth, M.: Measures of Research Predictors for Dyscalculia (Mathematics, Psychology, Tests) (1986)Google Scholar
  2. 2.
    Wilson, A.J., Dehaene, S.: Number sense and developmental dyscalculia. Hum. Behav. Learn. Dev. Brain Atyp. Dev. 2, 212–238 (2007)Google Scholar
  3. 3.
    Cohn, R.: Dyscalculia. Arch. Neurol. 4, 301–307 (1961)CrossRefGoogle Scholar
  4. 4.
    Kosc, L.: Developmentol dyscalculia. J. Learn. Disabil. 7, 164–177 (1974)CrossRefGoogle Scholar
  5. 5.
    Gerstmann, J.: Some notes on the gerstmann syndrome. Neurology 7, 866 (1957)CrossRefGoogle Scholar
  6. 6.
    Kertesz, A.: Aphasia and Associated Disorders. Taxonomy, Localization and Recovery. Grune & Stratton, New York (1979)Google Scholar
  7. 7.
    Springer, S., Deutsh, G.: Left Brain, Right Brain. W.H. Freeman, San Franciso (1981)Google Scholar
  8. 8.
    Henschen, S.E.: Clinical and anatomical contributions on brain pathology. Arch. Neurol. Psychiatry 13, 226–249 (1925)CrossRefGoogle Scholar
  9. 9.
    Bryan, T., Bryan, J.H.: Understanding Learning Disabilities (1982)Google Scholar
  10. 10.
    Dahmen, W., Hartje, W., Busing, A., Sturm, W.: Disorder of calculation in aphasic patients spatial and verbal components. Neuropsychologia 20, 145–153 (1982)CrossRefGoogle Scholar
  11. 11.
    Singer, H.D., Low, A.A.: Acalculia (henschen) a clinical study. Arch. Neurol. Psychiatry 29, 467–498 (1933)CrossRefGoogle Scholar
  12. 12.
    Nicolosi, L., Harryman, E., Kresheck, J.: Terminology of Communication Disorders: Speech-Language-Hearing. Williams & Wilkins, Baltimore (1978)Google Scholar
  13. 13.
    Košč, L.: Neuropsychological implications of diagnosis and treatment of mathematical learning disabilities. Top. Learn. Learn. Disabil. 1, 19–30 (1981)Google Scholar
  14. 14.
    Geary, D.C.: Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychol. Bull. 114, 345–362 (1993)CrossRefGoogle Scholar
  15. 15.
    Lewis, C., Hitch, G., Walker, P.: The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year-old boys and girls. J. Child Psychol. Psychiatry 35, 283–292 (1994)CrossRefGoogle Scholar
  16. 16.
    Koontz, K.L., Berch, D.B.: Identifying simple numerical stimuli: processing inefficiencies exhibited by arithmetic learning disabled children. Math. Cogn. 2, 1–24 (1996)CrossRefGoogle Scholar
  17. 17.
    McLean, J.F., Hitch, G.J.: Working memory impairments in children with specific arithmetic learning difficulties. J. Exp. Child Psychol. 74, 240–260 (1999)CrossRefGoogle Scholar
  18. 18.
    Jordan, N.C., Montani, T.O.: Cognitive arithmetic and problem solving: a comparison of children with specific and general mathematics difficulties. J. Learn. Disabil. 30, 624–634 (1997)CrossRefGoogle Scholar
  19. 19.
    Temple, C.M., Sherwood, S.: Representation and retrieval of arithmetical facts: developmental difficulties. Q. J. Exp. Psychol. 55A, 733–752 (2002)CrossRefGoogle Scholar
  20. 20.
    Eroglu, S., Toprak, S., Urgan, O.M., Ozge, E., Onur, M., Arzu Denizbasi, M., Haldun Akoglu, M., Cigdem Ozpolat, M., Ebru Akoglu, M.: DSM-IV Diagnostic and Statistical Manual of Mental Disorder (2012)Google Scholar
  21. 21.
    Butterworth, B.: Dyscalculia Screener. Nelson Publishing Company Ltd., Nashville (2003)Google Scholar
  22. 22.
    Butterworth, B.: Developmental dyscalculia. Handb. Math. Cogn. 455–468 (2013)Google Scholar
  23. 23.
    Ardila, A., Rosselli, M.: Acalculia and dyscalculia. Neuropsychol. Rev. 12, 179–231 (2002)CrossRefGoogle Scholar
  24. 24.
    Kuhl, D.E.: Voices count: employing a critical narrative research bricolage for insights into dyscalculia, pp. 1–135 (2014)Google Scholar
  25. 25.
    Newman, R.M.: The Dyscalculia Syndrome (1998)Google Scholar
  26. 26.
    Munro, J.: Dyscalculia: a unifying concept in understanding mathematics learning disabilities. Aust. J. Learn. Disabil. 8, 25–32 (2003)CrossRefGoogle Scholar
  27. 27.
    Monuteaux, M.C., Faraone, S.V., Herzig, K., Navsaria, N., Biederman, J.: ADHD and dyscalculia: evidence for independent familial transmission. J. Learn. Disabil. 38, 86–93 (2005)CrossRefGoogle Scholar
  28. 28.
    Goswami, U.: Neuroscience and education: from research to practice? Nat. Rev. Neurosci. 7, 406–411 (2006)CrossRefGoogle Scholar
  29. 29.
    Butterworth, B., Varma, S., Laurillard, D.: Dyscalculia: from brain to education. Science 332, 1049–1053 (2011). doi: 10.1126/science.1201536 CrossRefMathSciNetGoogle Scholar
  30. 30.
    Nagavali, T., Juliet, P.F.P.: Technology for Dyscalculia Children, pp. 1–10 (2015)Google Scholar
  31. 31.
    Becta, (British Educational Communications and Technology Agency): what the research says about ICT supporting special educational needs (SEN) and inclusion (2003)Google Scholar
  32. 32.
    Smith, B.: We have the technology, we can assist them! Using technology to assist students with learning disabilities and difficulties (2016)Google Scholar
  33. 33.
    Rubinsten, O., Henik, A.: Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends Cogn. Sci. 13, 92–99 (2009)CrossRefGoogle Scholar
  34. 34.
    Lønstrup, J., Denager, T., Christensen, M.B.: Enhancement of 7th-10th Graders’ understanding of equations with tangible representations. In: SIDeR 2012, p. 60 (2012)Google Scholar
  35. 35.
    Brunda, A., Bhavithra, J.: Adaptive computer assisted instruction (CAI) for students with dyscalculia (learning disability in mathematics). In: A2CWiC 2010 (2010)Google Scholar
  36. 36.
    O’Connell, T., Freed, G., Rothberg, M., Using apple technology to support learning for students with sensory and learning disabilities. In: The Carl Ruth Shapiro Family National Center for Accessible Media, WGBH Educational Foundation, pp. 1–25 (2010)Google Scholar
  37. 37.
    English, L.D., Mulligan, J.T.: Reconceptualizing Early Mathematics Learning. Advances in Mathematics Education. Springer, Dordrecht (2013). doi: 10.1007/978-94-007-6440-8 CrossRefzbMATHGoogle Scholar
  38. 38.
    Poobrasert, O., Gestubtim, W.: Development of assistive technology for students with dyscalculia. In: 2013 2nd International Conference on E-Learning and E-Technologies in Education (ICEEE), pp. 60–63 (2013)Google Scholar
  39. 39.
    Butterworth, B., Laurillard, D.: Low numeracy and dyscalculia: identification and intervention. ZDM - Int. J. Math. Educ. 42, 527–539 (2010)CrossRefGoogle Scholar
  40. 40.
    Räsänen, P., Salminen, J., Wilson, A.J., Aunio, P., Dehaene, S.: Computer-assisted intervention for children with low numeracy skills. Cogn. Dev. 24, 450–472 (2009)CrossRefGoogle Scholar
  41. 41.
    Käser, T., Baschera, G.M., Kohn, J., Kucian, K., Richtmann, V., Grond, U., Gross, M., von Aster, M.: Design and evaluation of the computer-based training program calcularis for enhancing numerical cognition. Front. Psychol. 4 (2013)Google Scholar
  42. 42.
    Wilson, A.J., Revkin, S.K., Cohen, D., Cohen, L., Dehaene, S.: Principles underlying the design of “the number race”, an adaptative computer game for remediation of dyscalculia. Behav. Brain Funct. 2, 20 (2006)CrossRefGoogle Scholar
  43. 43.
    Pólya, G.: Early Grade Development and Numeracy: The Academic State of Knowledge and How It Can Be Applied In Project Implementation In Socio-Economically Less developed countries, Giz.De. p. 7 (2012)Google Scholar
  44. 44.
    Nagavalli, T., Juliet, P.F.P.: Technology For Dyscalculia Children, SALEM,16, pp. 1–10 (2015)Google Scholar
  45. 45.
    Moomaw, S.: Assessing the difficulty level of math board games for young children. J. Res. Child. Educ. 29, 492–509 (2015)CrossRefGoogle Scholar
  46. 46.
    Kiger, D., Herro, D., Prunty, D.: Examining the influence of a mobile learning intervention on third grade math achievement. J. Res. Technol. Educ. 45, 61–82 (2012)CrossRefGoogle Scholar
  47. 47.
    Alexander, A., Blair, K.P., Goldman, S., Jimenez, O., Nakaue, M., Pea, R., Russell, A.: Go Math! how research anchors new mobile learning environments. In: 6th IEEE International Conference on Wireless, Mobile and Ubiquitous Technologies in Education, WMUTE 2010: Mobile Social Media for Learning and Education in Formal Informal Settings, pp. 57–64 (2010)Google Scholar
  48. 48.
    O’Malley, P.O., Jenkins, S., Wesley, B., Donehower, C., Rabuck, D., Lewis, M.E.B.: Effectiveness of using iPads to build math fluency. In: Paper presented at the Council Exceptiona Children Annuual Meeting, San Antonio, Texas, pp. 1–19 (2013)Google Scholar
  49. 49.
    Ariffin, M.M., Azureen, F., Halim, A., Abd, N.: Mobile application for dyscalculia children. In: Proceedings of 6th International Conference Computing and Informatics, ICOCI 2017 pp. 467–472 (2017)Google Scholar
  50. 50.
    Antonia, P.P., Vlamos, P.M.: Algorithmic problem solving using interactive virtual environment: a case study. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383, pp. 433–445. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41013-0_45 CrossRefGoogle Scholar
  51. 51.
    De Castro, M.V., Bissaco, M.A.S., Panccioni, B.M., Rodrigues, S.C.M., Domingues, A.M.: Effect of a virtual environment on the development of mathematical skills in children with dyscalculia. PLoS One 9, 1–16 (2014). doi: 10.1371/journal.pone.0103354 Google Scholar
  52. 52.
    Kopp, K.H., Stowitschek, J.J.: Effects of teachers’ planning on mathematics computation skills. Teach. Educ. Sepc. Educ. 5, 43–50 (1980)CrossRefGoogle Scholar
  53. 53.
    Peltenburg, M., Van Den Heuvel-Panhuizen, M., Doig, B.: Mathematical power of special-needs pupils: an ICT-based dynamic assessment format to reveal weak pupils’ learning potential. Br. J. Educ. Technol. 40, 273–284 (2009)CrossRefGoogle Scholar
  54. 54.
    Tahan, O., Baraké, F., Seliman, N., Merhi, Z.: My vWallet - a smartphone application for assisting people with math difficulties at point of sale. In: 2015 5th International Conference on Information and Communication Technology Accessibility ICTA 2015, pp. 1–5 (2016)Google Scholar
  55. 55.
    Melis, E., Andrès, E., Büdenbender, J., Frischauf, A., Goguadze, G., Libbrecht, P., Pollet, M., Ullrich, C.: ActiveMath: a generic and adaptive web-based learning environment. Int. J. Artif. Intell. Educ. 12, 385–407 (2001)Google Scholar
  56. 56.
    Anthony, L., Yang, J., Koedinger, K.R.: Toward next-generation, intelligent tutors: adding natural handwriting input. IEEE Multimed. 15, 64–68 (2008)CrossRefGoogle Scholar
  57. 57.
    Ferraz, F., Costa, A., Alves, V., Vicente, H., Neves, J., Neves, J.: Gaming in dyscalculia: a review on disMAT. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 232–241. Springer, Cham (2017). doi: 10.1007/978-3-319-56538-5_25 CrossRefGoogle Scholar
  58. 58.
    Caudell, T.P., Mizell, D.W.: Augmented reality: an Application of heads-up display technology to manual manufacturing processes. In: Proceedings of Twenty-Fifth Hawaii International Conference System Sciences, vol. 2, pp. 659–669 (1992)Google Scholar
  59. 59.
    Akçayır, M., Akçayır, G.: Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educ. Res. Rev. 20, 1–11 (2017)CrossRefGoogle Scholar
  60. 60.
    Azuma, R.: A survey of augmented reality. Presence Teleop. Virt. Environ. 6, 355–385 (1997)CrossRefGoogle Scholar
  61. 61.
    Mekni, M., Lemieux, A.: Augmented Reality : applications, challenges and future trends. In: Applied Computational Science, pp. 205–214 (2014)Google Scholar
  62. 62.
    Sabri, F.N.M., Khidzir, N.Z., Ismail, A.R., Daud, K.A.M.: An exploratory study on mobile augmented reality (AR) application for heritage content. J. Adv. Manag. Sci. 4, 489–493 (2016)Google Scholar
  63. 63.
    Chen, P., Liu, X., Cheng, W., Huang, R., Popescu, E., Mohamed, K., Khribi, K., Huang, R., Jemni, M., Demetrios, N.C.: A review of using augmented reality in education from 2011 to 2017. Innov. Smart Learn. 13–14 (2017)Google Scholar
  64. 64.
    Käser, T., Busetto, A.G., Baschera, G.-M., Kohn, J., Kucian, K., von Aster, M., Gross, M.: Modelling and optimizing the process of learning mathematics. In: Cerri, Stefano A., Clancey, William J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 389–398. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30950-2_50 CrossRefGoogle Scholar
  65. 65.
    Dunleavy, M., Dede, C., Mitchell, R.: Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J. Sci. Educ. Technol. 18, 7–22 (2009)CrossRefGoogle Scholar
  66. 66.
    Vyas, D.A., Bhatt, D.: Augmented reality (AR) applications: a survey on current trends, challenges, & future scope. Int. J. Adv. Res. Comput. Sci. 8, 5 (2017)CrossRefGoogle Scholar
  67. 67.
  68. 68.
    Williams, F.: OxSight uses augmented reality to aid the visually impaired. https://techcrunch.com/2017/02/16/oxsight-uses-augmented-reality-to-aide-the-visually-impaired/
  69. 69.
    Vinumol, K.P., Chowdhury, A., Kambam, R., Muralidharan, V.: Augmented reality based interactive text book: an assistive technology for students with learning disability. In: 2013 XV Symposium on Virtual Augmented Reality (SVR), pp. 232–235 (2013)Google Scholar
  70. 70.
    Bolhasan, R.A.: A study of dyslexia among primary school students in Sarawak, Malaysia intoduction. Sch. Dr. Stud. (Eur. Union.) J. 1, 250–268 (2009)Google Scholar
  71. 71.
    Ho, S.S., Lee, K.W., Chui, J.H.-l.: Enhancing learning experience of students with specific learning difficulties with augmented reality: a pilot study. In: Paper Presented at the the Asian Conference on Education (2011)Google Scholar
  72. 72.
    KanHan Technologies Limited: Apps to Support Kids with DyslexiaGoogle Scholar
  73. 73.
    Persefoni, K., Tsinakos, A.: Augmented reality and dyslexia : a new approach in teaching students. pp. 1–13 (2016)Google Scholar
  74. 74.
    Abas, H., Zaman, H.B.: Digital storytelling design with augmented reality technology for remedial students in learning Bahasa Melayu. In: Global Learn, pp. 3558–3563 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kohilah Miundy
    • 1
    Email author
  • Halimah Badioze Zaman
    • 1
  • Aliimran Nordin
    • 1
  1. 1.Institute of Visual InformaticsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations