Advertisement

Document Clustering in Military Explicit Knowledge: A Study on Peacekeeping Documents

  • Zuraini ZainolEmail author
  • Syahaneim Marzukhi
  • Puteri N. E. Nohuddin
  • Wan M. U. Noormaanshah
  • Omar Zakaria
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10645)

Abstract

In Military domain, knowledge can also be categorized into explicit knowledge and tacit knowledge, where the explicit military knowledge can be any form of knowledge that can easily articulated, codified, accessed and stored into various media forms. Further, advanced computer technologies give a convenient platform for digitizing documents, producing web documents and electronic documents, including this explicit military knowledge (e.g. military peacekeeping documents). The main goal here is to discover useful knowledge from military peacekeeping documents. Yet, text mining is a powerful technique that is widely used for discovering useful patterns and knowledge specially in unstructured text documents. This paper describes Text Analytics of Unstructured Data (TAUD) framework for analyzing and discovering significant text patterns exist in the military text documents. The framework consists of three (3) components: (i) data collection (ii) document preprocessing and (iii) text analytics and visualization which are word cloud and document clustering using K-Means algorithm. The findings of this study allow the military commanders and training officers to understand and access the military knowledge which they had learnt and gathered during the training programs before they can be deployed into a peacekeeping mission.

Keywords

Military knowledge Text mining Visualization Patterns 

Notes

Acknowledgements

The authors would like to thank Universiti Pertahanan Nasional Malaysia (UPNM) and Kementerian Pendidikan Malaysia (KPM) under NRGS/2013/UPNM/PK/P3 for sponsoring this publication.

References

  1. 1.
    United Nation peacekeeping (2017) http://www.un.org/en/peacekeeping/. Accessed 20 June 2017
  2. 2.
    Yusof, W.S.E.Y.W., Zakaria, O., Zainol, Z.: Establishing of knowledge based framework for situational awareness using Nonaka’s and Endsley’s models. In: International Conference on Information and Communication Technology, pp. 47–50. IEEE Xplore (2016).  10.1109/ICICTM.2016.7890775
  3. 3.
    Smith, E.A.: The role of tacit and explicit knowledge in the workplace. J. Knowl. Manage. 5(4), 311–321. MCG University Press (2010). ISSN 1367–3270Google Scholar
  4. 4.
    Nohuddin, P.N., et al.: Knowledge management in military: a review for Malaysian armed forces’ communities of practices. J. Converg. Inf. Technol. 7(6), 178–184. Advanced Institute of Convergence Information Technology Research Center, Malaysia (2010). doi: 10.4156/jcit.vol7.issue6.22
  5. 5.
    Feldman, R., Dagan, I.: Knowledge discovery in textual databases (KDT). In: KDD. vol. 95, pp. 112–117 (1995)Google Scholar
  6. 6.
    Shrihari, R.C., Desai, A.: A review on knowledge discovery using text classification techniques in text mining. Int. J. Comput. Appl. 111(6), 12–15 (2015)Google Scholar
  7. 7.
    Massey, G.: Extracting relevance from unstructured medical data. http://www.psqh.com/analysis/in-context-extracting-relevance-from-unstructured-medical-data/
  8. 8.
    Mooi, E., Sarstedt, M.: Understanding cluster-analysis. In: A Concise Guide to Market Research. The Process, Data, and Methods Using IBM SPSS Statistics, pp. 259–283. Springer, Heidelberg/Dordrecht (2011)Google Scholar
  9. 9.
    Mourya, S., Gupta, S.: Data Mining and Data Warehousing. Alpha Science International, Ltd., Oxford (2012)Google Scholar
  10. 10.
    Altuntas, S., Dereli, T., Kusiak, A.: Analysis of patent documents with weighted association rules. Technol. Forecast. Soc. Change 92, 249–262 (2015). ElsevierCrossRefGoogle Scholar
  11. 11.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)zbMATHGoogle Scholar
  12. 12.
    Gönen, M., Margolin, A.A.: Localized data fusion for kernel k-means clustering with application to cancer biology. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1305–1313. MIT Press, Cambridge (2014)Google Scholar
  13. 13.
    Nunez-Iglesias, J., et al.: Machine learning of hierarchical clustering to segment 2d and 3d images. PLoS One 8(8), e71715 (2013). doi: 10.1371/journal.pone.0071715 CrossRefGoogle Scholar
  14. 14.
    Tan, P.N., Steinbach, M., Kumar, V.: Data Mining Cluster Analysis: Basic Concepts and Algorithms. Pearson Addison-Wesley, Boston (2006)Google Scholar
  15. 15.
    Pereira, C.M., de Mello, R.F.: Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 42(15), 6026–6038 (2015). ElsevierCrossRefGoogle Scholar
  16. 16.
    Du, H.: Data Mining Techniques and Applications: An Introduction. Cengage Learning, Boston (2010)Google Scholar
  17. 17.
    Nohuddin, P.N., et al.: Keyword based clustering technique for collections of hadith chapters. Int. J. Islamic Appl. Comput. Sci. Technol. (IJASAT) 4(3), 11–18 (2015)Google Scholar
  18. 18.
    Reddy, V.S., Kinnicutt, P., Lee, R.: Text document clustering: the application of cluster analysis to textual document. In: International Conference on Computational Science and Computational Intelligence. IEEE (2016)Google Scholar
  19. 19.
    Abualigah, L.M., et al.: Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 84, 24–36 (2017). ACMCrossRefGoogle Scholar
  20. 20.
    Onan, A., Bulut, H., Korukoglu, S.: An improved ant algorithm with LDA-based representation for text document clustering. J. Inf. Sci. 43(2), 275–292 (2017)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (2009)zbMATHGoogle Scholar
  23. 23.
    Torgo, L.: Data Mining with R: Learning with Case Studies. Chapman and Hall/CRC, Boca Raton (2011)Google Scholar
  24. 24.
    Zainol, Z., et al.: Text analytics of unstructured textual data: a study on military peacekeeping document using R text mining package. In: International Conference on Computing and Informatics, pp. 1–7. School of Computing, UUM (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zuraini Zainol
    • 1
    Email author
  • Syahaneim Marzukhi
    • 1
  • Puteri N. E. Nohuddin
    • 2
  • Wan M. U. Noormaanshah
    • 1
  • Omar Zakaria
    • 1
  1. 1.Department of Computer ScienceUniversiti Pertahanan Nasional MalaysiaKuala LumpurMalaysia
  2. 2.Institute of Visual Informatics, Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations