Advertisement

Association Rule Mining Using Time Series Data for Malaysia Climate Variability Prediction

  • Rabiatul A. A. RashidEmail author
  • Puteri N. E. Nohuddin
  • Zuraini Zainol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10645)

Abstract

Many studies have been conducted to determine how data mining can be used in predicting climate change. Previous studies showed many data mining methods have been used in related to climate prediction, however classification and clustering methods are widely used to generate the climate prediction model. In this study, Association Rule Mining (ARM) is used to discover hidden rules in time series climate data from previous years and to analyze the relationship between the discovered rules. The dataset used in this study is a set of weather data from the Petaling Jaya observation station in Selangor for the year 2013 to 2015. This paper aims to utilize ARM for extracting behavioural patterns within the climate data that can be used to develop the prediction model for climate variability. The proposed framework is developed to provide a better approach in understanding how ARM can be used to find meaningful patterns in the climate data and generate rules that can be used to build a prediction model.

Keywords

Association rule mining Climate variability Climate prediction 

Notes

Acknowledgements

Authors would like to thank Institute of Climate Change, The National University of Malaysia for providing the climate data to be used in this study.

References

  1. 1.
    Grant, M.S.: Climate variability and climate change (2010)Google Scholar
  2. 2.
    Siwar, C., Alam, M., Murad, A.W., Quasem, A.-A.: A review of the linkages between climate change, agricultural sustainability and poverty in Malaysia. Int. Rev. Bus. Res. Pap. 5, 309–321 (2009)Google Scholar
  3. 3.
    Beer, T.: Climate variability and change: a perspective from the oceania region. Geosci. Lett. 1, 5 (2014). doi: 10.1186/2196-4092-1-5 CrossRefGoogle Scholar
  4. 4.
    Gouda, K.C., Chandrika, M.: Data mining for weather and climate studies. Int. J. Eng. Trends Technol. 32, 29–32 (2016)CrossRefGoogle Scholar
  5. 5.
    Yu, X., Liu, Y., Huang, X., An, A.: Mining online reviews for predicting sales performance: a case study in the movie domain. IEEE Trans. Knowl. Data Eng. 24, 720–734 (2012). doi: 10.1109/TKDE.2010.269 CrossRefGoogle Scholar
  6. 6.
    Rashid, R.A.A., Nohuddin, P.N.E., Zainol, Z., Kamarudin, S.: Dengue Epidemic Detection Using Data Mining Techniques for Healthcare Monitoring Initiative (2017, to appear)Google Scholar
  7. 7.
    Claveria, O., Torra, S.: Forecasting tourism demand to Catalonia: neural networks vs. time series models. Econ. Model. 36, 220–228 (2014). doi: 10.1016/j.econmod.2013.09.024 CrossRefGoogle Scholar
  8. 8.
    Nohuddin, P., Coenen, F., Christley, R.: The application of social network mining to cattle movement analysis: introducing the predictive trend mining framework. Soc. Netw. Anal. Min. 6, (2016) doi: 10.1007/s13278-016-0353-x
  9. 9.
    Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45, 1–34 (2012). doi: 10.1145/2379776.2379788 CrossRefzbMATHGoogle Scholar
  10. 10.
    Radzuan, N.F.M., Othman, Z., Bakar, A.A.: Uncertain time series in weather prediction. Procedia Technol. 11, 557–564 (2013). doi: 10.1016/j.protcy.2013.12.228 CrossRefGoogle Scholar
  11. 11.
    Ramamohan, Y., Vasantharao, K., Chakravarti, C.K., Ratnam, A.S.K.: A study of data mining tools in knowledge discovery process. Int. J. Soft Comput. Eng. 2, 191–194 (2012)Google Scholar
  12. 12.
    Olaiya, F.: Application of data mining techniques in weather prediction and climate change studies. Int. J. Inf. Eng. Electron. Bus. 4, 51–59 (2012). doi: 10.5815/ijieeb.2012.01.07 Google Scholar
  13. 13.
    Joshi, A., Kamble, B., Joshi, V., Kajale, K., Dhange, N.: Weather forecasting and climate changing using data mining application. Int. J. Adv. Res. Comput. Commun. Eng. 4, 19–21 (2015). doi: 10.17148/IJARCCE.2015.4305 CrossRefGoogle Scholar
  14. 14.
    Abrar, M., Tze, A., Sim, H., Shah, D., Khusro, S., Lecturer, S., Author, C.: Weather prediction using classification. Sci. Int. 26, 2217–2223 (2014)Google Scholar
  15. 15.
    Zainudin, S., Jasim, D.S., Bakar, A.A.: Comparative analysis of data mining techniques for Malaysian rainfall prediction. Int. J. Adv. Sci. Eng. Inf. Technol. 6, 1148–1153 (2016)Google Scholar
  16. 16.
    Suresh, H., Raimond, K.: Mining association rules from time series data using hybrid approaches. Int. J. Comput. Eng. Res. 3, 181–189 (2013)Google Scholar
  17. 17.
    Kamsu-Foguem, B., Rigal, F., Mauget, F.: Mining association rules for the quality improvement of the production process. Expert Syst. Appl. 40, 1034–1045 (2013). doi: 10.1016/j.eswa.2012.08.039 CrossRefGoogle Scholar
  18. 18.
    Rana, D.P., Mistry, N.J., Raghuwanshi, M.M.: Novel usage of Gujarati calendar in temporal association rule mining for temperature analysis of Surat, India. In: Proceedings of 2014 International Conference Soft Computing Machine Intelligence ISCMI 2014, pp. 38–41 (2014). doi: 10.1109/ISCMI.2014.20
  19. 19.
    Alshareef, A., Bakar, A.A., Hamdan, A.R., Abdullah, S.M.S., Jaafar, O.: Pattern discovery algorithm for weather prediction problem. In: Proceedings of 2015 Science and Information Conference SAI 2015. pp. 572–577 (2015). doi: 10.1109/SAI.2015.7237200
  20. 20.
    Yoo, J.S.: Temporal data mining: similarity-profiled. In: Holmes, D.E., Jain, L.C. (eds.) Data Mining: Foundations and Intelligent Paradigms. Intelligent Systems Reference Library, vol. 23, pp. 29–47. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-23166-7_3 CrossRefGoogle Scholar
  21. 21.
    Mishra, S., Saravanan, C., Dwivedi, V.K., Pathak, K.K.: Discovering flood recession pattern in hydrological time series data mining during the post monsoon period - proquest. Comput. Appl. 90, 35–44 (2014)Google Scholar
  22. 22.
    Qureshi, Z., Bansal, J., Bansal, S.: A survey on association rule mining in cloud computing. Int. J. Adv. Res. Comput. Commun. Eng. 3, 318–321 (2013)Google Scholar
  23. 23.
    Liu, X., Zhai, K., Pedrycz, W.: An improved association rules mining method. Expert Syst. Appl. 39, 1362–1374 (2012). doi: 10.1016/j.eswa.2011.08.018 CrossRefGoogle Scholar
  24. 24.
    Kumar, B., Rukmani, K.: Implementation of web usage mining using APRIORI and FP growth algorithms. Int. J. Adv. Netw. Appl. 404, 400–404 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rabiatul A. A. Rashid
    • 1
    Email author
  • Puteri N. E. Nohuddin
    • 1
  • Zuraini Zainol
    • 2
  1. 1.Institute of Visual InformaticsNational University of MalaysiaBangiMalaysia
  2. 2.Department of Computer Science, Faculty of Science and Defence TechnologyNational Defence University of MalaysiaKuala LumpurMalaysia

Personalised recommendations