Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 360 Accesses

Abstract

Discrete techniques (MD or BD), despite their conceptual simplicity, are very often too expensive from the computational point of view. Kinetic theory approaches seem, in many cases, a suitable compromise between the accuracy of finer descriptions and the computational efficiency of macroscopic descriptions. In this chapter, we revisit some kinetic theory models. Even if there is a common rationale for deriving the different models, in order to emphasize their physical contents, we will follow a diversity of alternative routes to derive them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Schrödinger, What is life? The physical aspect of the living cell. Dublin Institute for Advanced Studies at Trinity College, Dublin (1944)

    Google Scholar 

  2. F. Chinesta, E. Abisset, A. Ammar, E. Cueto, Efficient numerical solution of continuous mesoscale models of complex fluids involving the Boltzmann and Fokker–Planck equations. Commun. Comput. Phys. 17(4), 975–1006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Clarendon Press, Oxford, 2001)

    MATH  Google Scholar 

  4. G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922)

    Article  MATH  Google Scholar 

  5. C. Binetruy, F. Chinesta, R. Keunings, Flows in Polymers, Reinforced Polymers and Composites. A Multiscale Approach, Springerbriefs (Springer, Berlin, 2015)

    Google Scholar 

  6. C.V. Chaubal, A. Srinivasan, O. Egecioglu, L.G. Leal, Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems. J. Non-Newtonian Fluid Mech. 70, 125–154 (1997)

    Article  Google Scholar 

  7. F. Chinesta, G. Chaidron, A. Poitou, On the solution of the Fokker–Planck equation in steady recirculating flows involving short fibre suspensions. J. Non-Newtonian Fluid Mech. 113, 97–125 (2003)

    Article  MATH  Google Scholar 

  8. A. Ammar, F. Chinesta, A particle strategy for solving the Fokker–Planck equation governing the fibre orientation distribution in steady recirculating flows involving short fibre suspensions, in Lectures Notes on Computational Science and Engineering, vol. 43 (Springer, Berlin, 2005), pp. 1–16

    Google Scholar 

  9. F. Chinesta, A. Ammar, A. Falco, M. Laso, On the reduction of stochastic kinetic theory models of complex fluids. Model. Simul. Mater. Sci. Eng. 15, 639–652 (2007)

    Article  Google Scholar 

  10. H.C. Ottinger, Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  11. A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139, 153–176 (2006)

    Article  MATH  Google Scholar 

  12. A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II. J. Non-Newtonian Fluid Mech. 144, 98–121 (2007)

    Article  MATH  Google Scholar 

  13. F. Chinesta, A. Ammar, A. Leygue, R. Keunings, An overview of the proper generalized decomposition with applications in computational rheology. J. Non-Newtonian Fluid Mech. 166, 578–592 (2011)

    Article  MATH  Google Scholar 

  14. F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer, SpringerBriefs in Applied Science and Technology (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  15. E. Abisset-Chavanne, F. Chinesta, J. Ferec, G. Ausias, R. Keunings, On the multiscale description of dilute suspensions of non-Brownian rigid clusters composed of rods. J. Non-Newtonian Fluid Mech. 222, 34–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Abisset-Chavanne, R. Mezher, S. Le Corre, A. Ammar, F. Chinesta, Kinetic theory microstructure modeling in concentrated suspensions. Entropy 15, 2805–2832 (2013)

    Article  MathSciNet  Google Scholar 

  17. R. Tanner, Engineering Rheology (Oxford University Press, Oxford, 1985)

    MATH  Google Scholar 

  18. R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamic of Polymeric Liquids (Wiley, New York, 1987)

    Google Scholar 

  19. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1987)

    Google Scholar 

  20. P.G. de Gennes, Repation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(2), 572–579 (1971)

    Article  Google Scholar 

  21. M. Doi, S.F. Edwards, Dynamics of rod-like macromolecules in concentrated solution. J. Chem. Soc. Faraday Trans. 74, 560–570 (1978)

    Article  Google Scholar 

  22. A. Ma, F. Chinesta, M. Mackley, The rheology and modelling of chemically treated carbon nanotube suspensions. J. Rheol. 53(3), 547–573 (2009)

    Article  Google Scholar 

  23. A. Ma, F. Chinesta, A. Ammar, M. Mackley, Rheological modelling of carbon nanotube aggregate suspensions. J. Rheol. 52(6), 1311–1330 (2008)

    Article  Google Scholar 

  24. F. Chinesta, M. Mackley, Microstructure evolution during liquid-liquid laminar mixing: a kinetic theory approach. Int. J. Mater. Form. 1, 47–55 (2008)

    Article  Google Scholar 

  25. E.D. Wetzel, C.L. Tucker III, Area tensors for modeling microstructure during laminar liquid-liquid mixing. Int. J. Multiph. Flow 25, 35–61 (1999)

    Article  MATH  Google Scholar 

  26. M. Doi, T. Ohta, Dynamics and rheology of complex interfaces. J. Chem. Phys. 95, 1242–1248 (1991)

    Article  Google Scholar 

  27. A. Ammar, E. Cueto, F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions. Int. J. Numer. Methods in Biomed. Eng. 28(9), 960–973 (2012)

    Article  MathSciNet  Google Scholar 

  28. A. Ammar, M. Magnin, O. Roux, E. Cueto, F. Chinesta, Chemical master equation empirical moment closure. Biol. Syst. 5/1, 1000155 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chinesta, F., Abisset-Chavanne, E. (2018). Kinetic Theory Models. In: A Journey Around the Different Scales Involved in the Description of Matter and Complex Systems. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70001-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70001-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70000-7

  • Online ISBN: 978-3-319-70001-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics