Advertisement

The Schrödinger Equation

  • Francisco ChinestaEmail author
  • Emmanuelle Abisset-Chavanne
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The finest scale in the matter description consists of the one of quantum mechanics. In this chapter we revisit some valuable concepts of quantum mechanics, and more particularly the Schrödinger equation governing the time evolution of the so-called wavefunction, from which expectations can be easily derived. Another important output is the interatomic potentials responsible of the chemical bonds determining the structure and properties of materials. Even if the quantum framework is able to define the big picture, an important difficulty remains: the Schrödinger equation is defined in a highly multidimensional space and its solution is in most cases unattainable.

Keywords

Wavefunction Schrödinger equation Expectations Pauli principle Interatomic potentials 

References

  1. 1.
    E. Wichmann, Quantum Physics (McGraw-Hill, New York, 1971)Google Scholar
  2. 2.
    S. Ortoli, J.P. Pharabod, Le cantique des quantiques (La Dcouverte, 1984)Google Scholar
  3. 3.
    J. Gribbin, In Search of Schrdingers Cat (Bantam Books, New York, 1984)Google Scholar
  4. 4.
    B. Diu, Trait de physique lusage des profanes (Odile Jacob, 2000)Google Scholar
  5. 5.
    A. Rae, Quantum Physics: Illusion or Reality? (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  6. 6.
    J.L. Basdevant, 12 Leçons de mcanique quantique (Vuibert, 2006)Google Scholar
  7. 7.
    R. Omnès, Les indispensables de la mcanique quantique (Odile Jacob, 2006)Google Scholar
  8. 8.
    J. Hladik, Pour comprendre simplement les origines de lvolution de la Physique quantique (Ellipses, 2007)Google Scholar
  9. 9.
    J.H. Weiner, Statistical Mechanics of Elasticity (Dover, New York, 2002)zbMATHGoogle Scholar
  10. 10.
    D.B. Cook, Handbook of Computational Chemistry (Oxford University Press, New York, 1998)Google Scholar
  11. 11.
    A. Ammar, F. Chinesta, P. Joyot, The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions. Int. J. Multiscale Comput. Eng. 6(3), 191–213 (2008)CrossRefGoogle Scholar
  12. 12.
    O. Koch, W. Kreuzer, A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173, 960–976 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    R.B. Laughlin, The theory of everything. Proc. USA Natl. Acad. Sci. (2000)Google Scholar
  14. 14.
    B.A. Bernevig, D. Giuliano, R.B. Laughlin, Coordinate representation of the one-spinon one-holon wavefunction and spinon-holon interaction. Phys. Rev. B 65, 195112 (2002)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Francisco Chinesta
    • 1
    Email author
  • Emmanuelle Abisset-Chavanne
    • 2
  1. 1.ENSAM Paris TechParisFrance
  2. 2.École Centrale de NantesNantesFrance

Personalised recommendations