Skip to main content

Cochlear Implants: Consequences of Microphone Aging on Speech Recognition

  • Chapter
  • First Online:
  • 796 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 125))

Abstract

Aging is a general phenomenon which affects everything and everybody in this world. Designed for the rehabilitation of profound deafness, cochlear implants (CI) do not escape to this general rule. One very insidious effect concerns the microphone as an ongoing drift occurs over the time. In this work we wish to assess the consequences of this evolution on speech recognition. In order to perform this task, a general population of CI users and NH subjects (using a CI simulator) participated to this study. They listened to French dissyllabic words and we recorded recognition percentages. Words were presented to the listeners in noise with a variable signal to noise ratio (SNR) and the percentages ranged from 0 to 100%. For the CI simulator, the drift was simulated from data coming from figures measured on regular hearing aids. This choice seems relevant as CIs and hearing aids use the same microphones. Also, the CI simulator we used, picked up the general principles of a vocoder to represent the classical coding strategies used in CIs (CIS-like and n-of-m). With CI users, the results were compared before and after cleaning the microphones; also, in a subgroup of CI users, we performed the replacement of the head filter protecting the microphone and the recognition percentages were compared with those coming from the standard “Brush and Blow” cleaning procedure. The results have been revisited and quantified after a curve fitting. The outcomes indicated that the CIS-like coding schemes were less sensitive to aging than the n-of-m strategies. Also, cleaning ameliorated the recognition performances, but the increase was not dramatically high. Furthermore, the improvement mainly occurred in the middle of the SNR range where the noise was not too intense. We made these observations with CI users and with NH subjects so it indicates that the results should be linked to the properties of the signal. Finally, as we cannot stop the consequences of aging, we can set up an action plan to reduce its effect. And this is true in everyday life. In the case of CIs, a lot of solutions are available, among them the choice of the sound coding strategy and the periodicity of the clinical check and device setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguiar, D.E., Taylor, N.E., Li, J., Gazanfari, D.K., Talavage, T.M., Laflen, J.B., et al.: Information theoretic evaluation of a noiseband-based cochlear implant simulator. Hear. Res. (2015)

    Google Scholar 

  2. Battmer, R.-D., O’Donoghue, G.M., Lenarz, T.: A multicenter study of device failure in European cochlear implant centers. Ear Hear. 28, 95S–99S (2007)

    Article  Google Scholar 

  3. Balkany, T.J., Hodges, A.V., Buchman, C.A., Luxford, W.M., Pillsbury, C.H., Roland, P.S., et al.: Cochlear implant soft failures consensus development conference statement. Cochlear Implants Int. 6, 105–122 (2005)

    Article  Google Scholar 

  4. Schweitzer, C.: Mind the ports! The effect of severe microphone inlet occlusion: port disasters, or how everyday activities can lead to severe microphone occlusion in a directional hearing aid. Hear. Rev. 15, 14 (2008)

    MathSciNet  Google Scholar 

  5. Pereira, A.M., de Melo, T.M., Pereira, A.M., de Melo, T.M.: Repair issues associated with cochlear implants external components: the influence of age and time of use. Rev. CEFAC 16, 1419–1425 (2014)

    Article  Google Scholar 

  6. Silverman, C.A., Linstrom, C.J., Gilston, N., Schoepflin, J.R.: Repair issues associated with cochlear implants. Cochlear Implants Int. 11, 469–472 (2010)

    Article  Google Scholar 

  7. Razza, S., Burdo, S., Bonaretti, S.: Acoustical signal check: microphone integrity evaluation through a common hearing aid analyzer. In: 5th Object Measurement Symposium Cochlear Implants ABI, pp. 19–22 (2007)

    Google Scholar 

  8. Razza, S., Burdo, S.: An underestimated issue: unsuspected decrease of sound processor microphone sensitivity, technical, and clinical evaluation. Cochlear Implants Int. 12, 114–123 (2011)

    Article  Google Scholar 

  9. Wouters, J., McDermott, H.J., Francart, T.: Sound Coding in Cochlear Implants: from electric pulses to hearing. IEEE Signal Process. Mag. 32, 67–80 (2015)

    Article  Google Scholar 

  10. Wilson, B.S., Lawson, D.T., Zerbi, M., Finley, C.C., Wolford, R.D.: New processing strategies in cochlear implantation. Am. J. Otol. 16, 669–675 (1995)

    Google Scholar 

  11. Garnham, C., O’Driscoll, M., Ramsden And, R., Saeed, S.: Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets. Ear Hear. 23, 540–552 (2002)

    Article  Google Scholar 

  12. Dorman, M.F., Loizou, P.C., Fitzke, J., Tu, Z.: Recognition of monosyllabic words by cochlear implant patients and by normal-hearing subjects listening to words processed through cochlear implant signal processing strategies. Ann. Otol. Rhinol. Laryngol. Suppl. 185, 64–66 (2000)

    Article  Google Scholar 

  13. Shannon, R.V., Fu, Q.-J., Galvin, J.: The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Oto-Laryngol. Suppl. 50–54 (2004)

    Google Scholar 

  14. Dorman, M.F., Loizou, P.C.: The identification of consonants and vowels by cochlear implant patients using a 6-channel continuous interleaved sampling processor and by normal-hearing subjects using simulations of processors with two to nine channels. Ear Hear. 19, 162–166 (1998)

    Article  Google Scholar 

  15. Traunmüller, H.: Analytical expressions for the tonotopic sensory scale. J. Acoust. Soc. Am. 88, 97–100 (1990)

    Article  Google Scholar 

  16. Serra, P.-O.: Effet de l’entretien des aides auditives sur leurs performances [Audiology diploma dissertation]. University of Montpellier (2015)

    Google Scholar 

  17. Perreaut, K., Gallego, S., Berger-Vachon, C., Millioz, F.: Influence of microphone encrusting on the efficiency of cochlear implants preliminary study with a simulation of CIS and “n-of-m” strategies. AMSE J. Model. C 75–2, 199–208 (2014)

    Google Scholar 

  18. Kerber, S., Seeber, B.U.: Sound localization in noise by normal-hearing listeners and cochlear implant users. Ear Hear. 33, 445–457 (2012)

    Article  Google Scholar 

  19. Hazrati, O., Loizou, P.C.: Comparison of two channel selection criteria for noise suppression in cochlear implants. J. Acoust. Soc. Am. 133, 1615–1624 (2013)

    Article  Google Scholar 

  20. Shannon, R.V., Zeng, F.G., Kamath, V., Wygonski, J., Ekelid, M.: Speech recognition with primarily temporal cues. Science 270, 303–304 (1995)

    Article  Google Scholar 

  21. Wilson, B.S., Finley, C.C., Farmer, J.C., Lawson, D.T., Weber, B.A., Wolford, R.D., et al.: Comparative studies of speech processing strategies for cochlear implants. Laryngoscope 98, 1069–1077 (1988)

    Article  Google Scholar 

  22. Nelson, P.B., Jin, S.-H., Carney, A.E., Nelson, D.A.: Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. J. Acoust. Soc. Am. 113, 961–968 (2003)

    Article  Google Scholar 

  23. Loizou, P.C., Dorman, M.F., Tu, Z., Fitzke, J.: Recognition of sentences in noise by normal-hearing listeners using simulations of speak-type cochlear implant signal processors. Ann. Otol. Rhinol. Laryngol. Suppl. 185, 67–68 (2000)

    Article  Google Scholar 

  24. Jeanvoine, A., Gnansia, D., Truy, E., Berger-Vachon, C.: Contribution of noise reduction algorithms: perception versus localization simulation in the case of binaural cochlear implant (BCI) coding. Emerg. Trends Comput. Biol. Bioinf. Syst. Biol. 307–324 (2015)

    Google Scholar 

  25. Kallel, F., Laboissiere, R., Ben Hamida, A., Berger-Vachon, C.: Influence of a shift in frequency distribution and analysis rate on phoneme intelligibility in noisy environments for simulated bilateral cochlear implants. Appl. Acoust. 74, 10–17 (2013)

    Article  Google Scholar 

  26. Hu, Y., Loizou, P.C.: A new sound coding strategy for suppressing noise in cochlear implants. J. Acoust. Soc. Am. 124, 498–509 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the persons and the institutions who participated to the study; M. Kevin Perreaut who initiated the work, Dr. Fabien Seldran and Dr. Fabien Millioz for the scientific contribution and Ms. Evelyne Veuillet for the links with the ethic committee. We also wanted to thank the members of the CRIC Lyon and the staff of the Edouard-Herriot hospital for their collaboration, the subjects who listened to the Fourier’s lists, the Hospitals of Lyon and the Polytechnic School of the University of Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Berger-Vachon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berger-Vachon, C., Cucis, P.A., Truy, E., Thai Van, H., Gallego, S. (2018). Cochlear Implants: Consequences of Microphone Aging on Speech Recognition. In: Berger-Vachon, C., Gil Lafuente, A., Kacprzyk, J., Kondratenko, Y., Merigó, J., Morabito, C. (eds) Complex Systems: Solutions and Challenges in Economics, Management and Engineering. Studies in Systems, Decision and Control, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-319-69989-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69989-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69988-2

  • Online ISBN: 978-3-319-69989-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics