Skip to main content

Molecular Profiling and Targeted Therapy for Triple-Negative Breast Cancer

  • Chapter
  • First Online:
  • 1558 Accesses

Abstract

Triple-negative breast cancer (TNBC) is a heterogeneous disease that can be classified by gene expression analysis into distinct subtypes associated with variable clinical outcomes. The standard of care treatment for TNBC in the neoadjuvant, adjuvant, and metastatic settings is cytotoxic chemotherapy. There are no targeted therapies currently approved by the US Food and Drug Administration for the treatment of TNBC, but several promising targeted agents and immunotherapies are currently under investigation.

This is a preview of subscription content, log in via an institution.

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  Google Scholar 

  6. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rahim F, Hajizamani S, Mortaz E, Ahmadzadeh A, Shahjahani M, Shahrabi S, et al. Molecular regulation of bone marrow metastasis in prostate and breast cancer. Bone marrow Res. 2014;2014:405920.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40.

    Article  CAS  PubMed  Google Scholar 

  9. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.

    Article  CAS  PubMed  Google Scholar 

  10. Tutt A, Ashworth A. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med. 2002;8(12):571–6.

    Article  CAS  PubMed  Google Scholar 

  11. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108(2):171–82.

    Article  CAS  PubMed  Google Scholar 

  12. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13(9):2728–37.

    Article  CAS  PubMed  Google Scholar 

  13. Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps17.

    Article  PubMed  Google Scholar 

  14. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  15. Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5(9):689–98.

    Article  CAS  PubMed  Google Scholar 

  16. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  17. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet (Lond Engl). 2010;376(9737):235–44.

    Article  CAS  Google Scholar 

  18. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.

    Article  CAS  PubMed  Google Scholar 

  19. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017.

    Google Scholar 

  20. Tutt ANJ, Kaufman B, Gelber RD, Fadden EM, Goessl CD, Viale G, et al. OlympiA: a randomized phase III trial of olaparib as adjuvant therapy in patients with high-risk HER2-negative breast cancer (BC) and a germline BRCA1/2 mutation (gBRCAm). J Clin Oncol. 2015;33(15_suppl):TPS1109-TPS.

    Google Scholar 

  21. Isakoff SJ, Overmoyer B, Tung NM, Gelman RS, Giranda VL, Bernhard KM, et al. A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin Oncol. 2010;28(15_suppl):1019.

    Article  Google Scholar 

  22. Somlo G, Frankel PH, Arun BK, Ma CX, Garcia AA, Cigler T, et al. Efficacy of the PARP inhibitor veliparib with carboplatin or as a single agent in patients with germline BRCA1- or BRCA2-associated metastatic breast cancer: California Cancer Consortium Trial NCT01149083. Clin Cancer Res. 2017.

    Google Scholar 

  23. Isakoff S, Overmoyer B, Tung N, Gelman R, Habin K, Qian J, et al. P3-16-05: a phase II trial expansion cohort of the PARP inhibitor veliparib (ABT888) and temozolomide in BRCA1/2 associated metastatic breast cancer. Cancer Res. 2011;71(24 Supplement):P3-16-05-P3-16-05.

    Article  Google Scholar 

  24. Isakoff SJ, Puhalla S, Domchek SM, Friedlander M, Kaufman B, Robson M, et al. A randomized phase II study of veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in BRCA1/2 metastatic breast cancer: design and rationale. Future Oncol (Lond Engl). 2017;13(4):307–20.

    Article  CAS  Google Scholar 

  25. Diéras V, Han H, Robson M, Palácová M, Marcom P, Jager A, et al. Abstract P4-22-02: evaluation of veliparib (V) and temozolomide (TMZ) in a phase 2 randomized study of the efficacy and tolerability of V+TMZ or carboplatin (C) and paclitaxel (P) vs placebo (Plc)+C/P in patients (pts) with BRCA1 or BRCA2 mutations and metastatic breast cancer. Cancer Res. 2017;77(4 Supplement):P4-22-02-P4-22-02.

    Google Scholar 

  26. Han H, Diéras V, Robson M, Palácová M, Marcom P, Jager A, et al. Abstract S2-05: efficacy and tolerability of veliparib (V; ABT-888) in combination with carboplatin (C) and paclitaxel (P) vs placebo (Plc)+C/P in patients (pts) with BRCA1 or BRCA2 mutations and metastatic breast cancer: a randomized, phase 2 study. Cancer Res. 2017;77(4 Suppl):S2-05-S2-05.

    Google Scholar 

  27. Balmana J, Tryfonidis K, Audeh W, Goulioti T, Slaets L, Agarwal S, et al. Abstract OT1-03-05: a phase III, randomized, open label, multicenter, controlled trial of niraparib versus physician’s choice in previously treated, HER2 negative, germline BRCA mutation-positive breast cancer patients. An EORTC-BIG intergroup study (BRAVO study). Cancer Res. 2016;76(4 Suppl):OT1-03-5-OT1-03-5.

    Google Scholar 

  28. Litton J, Ettl J, Hurvitz S, Mina L, Rugo H, Lee K-H, et al. Abstract OT2-01-13: a phase 3, open-label, randomized, 2-arm international study of the oral dual PARP inhibitor talazoparib in germline BRCA mutation subjects with locally advanced and/or metastatic breast cancer (EMBRACA). Cancer Res. 2017;77(4 Supplement):OT2-01-13-OT2-01-13.

    Google Scholar 

  29. Hartman AR, Kaldate RR, Sailer LM, Painter L, Grier CE, Endsley RR, et al. Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer. 2012;118(11):2787–95.

    Article  CAS  PubMed  Google Scholar 

  30. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110–20.

    Article  CAS  PubMed  Google Scholar 

  32. Rugo HS, Olopade OI, DeMichele A, Yau C, van’t Veer LJ, Buxton MB, et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med. 2016;375(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geyer CE, O'Shaughnessy J, Untch M, Sikov W, Rugo HS, McKee MD, et al. Phase 3 study evaluating efficacy and safety of veliparib (V) plus carboplatin (Cb) or Cb in combination with standard neoadjuvant chemotherapy (NAC) in patients (pts) with early stage triple-negative breast cancer (TNBC). J Clin Oncol. 2017;35(15_suppl):520.

    Google Scholar 

  34. Barton VN, D'Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther. 2015;14(3):769–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loibl S, Muller BM, von Minckwitz G, Schwabe M, Roller M, Darb-Esfahani S, et al. Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;130(2):477–87.

    Article  CAS  PubMed  Google Scholar 

  36. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19(19):5505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bonnefoi H, Grellety T, Tredan O, Saghatchian M, Dalenc F, Mailliez A, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol. 2016;27(5):812–8.

    Article  CAS  PubMed  Google Scholar 

  39. Traina TA, Miller K, Yardley DA, O'Shaughnessy J, Cortes J, Awada A, et al. Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC). J Clin Oncol. 2015;33(15_suppl):1003.

    Google Scholar 

  40. Parker JS, Peterson AC, Tudor IC, Hoffman J, Uppal H. A novel biomarker to predict sensitivity to enzalutamide (ENZA) in TNBC. J Clin Oncol. 2015;33(15_suppl):1083.

    Google Scholar 

  41. Traina TA, Yardley DA, Schwartzberg LS, O'Shaughnessy J, Cortes J, Awada A, et al. Overall survival (OS) in patients (Pts) with diagnostic positive (Dx+) breast cancer: subgroup analysis from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in AR+ triple-negative breast cancer (TNBC) treated with 0-1 prior lines of therapy. J Clin Oncol. 2017;35(15_suppl):1089.

    Google Scholar 

  42. Conzen SD. Minireview: nuclear receptors and breast cancer. Mol Endocrinol (Baltimore, MD). 2008;22(10):2215–28.

    Article  CAS  Google Scholar 

  43. Mikosz CA, Brickley DR, Sharkey MS, Moran TW, Conzen SD. Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem. 2001;276(20):16649–54.

    Article  CAS  PubMed  Google Scholar 

  44. Skor MN, Wonder EL, Kocherginsky M, Goyal A, Hall BA, Cai Y, et al. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res. 2013;19(22):6163–72.

    Article  CAS  PubMed  Google Scholar 

  45. Pan D, Kocherginsky M, Conzen SD. Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res. 2011;71(20):6360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nanda R, Stringer-Reasor EM, Saha P, Kocherginsky M, Gibson J, Libao B, et al. A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer. SpringerPlus. 2016;5(1):947.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stringer EM, Saha P, Swoboda A, Kocherginsky M, Baker G, Olberkyte S, et al. A phase I trial of mifepristone (M), carboplatin (C), and gemcitabine (G) in advanced breast and ovarian cancer. J Clin Oncol. 2017;35(15_suppl):1083.

    Google Scholar 

  48. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  50. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V, et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med. 2011;3(111):111ra20.

    Article  Google Scholar 

  52. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O'Shea MA, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol. 2008;181(10):6738–46.

    Article  CAS  PubMed  Google Scholar 

  54. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–7.

    Article  CAS  PubMed  Google Scholar 

  55. Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, et al. Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. J Clin Oncol. 2017;35(15_suppl):1008.

    Google Scholar 

  56. Adams S, Loi S, Toppmeyer D, Cescon DW, Laurentiis MD, Nanda R, et al. Phase 2 study of pembrolizumab as first-line therapy for PD-L1–positive metastatic triple-negative breast cancer (mTNBC): preliminary data from KEYNOTE-086 cohort B. J Clin Oncol. 2017;35(15_suppl):1088.

    Google Scholar 

  57. Winer EP, Dang T, Karantza V, Su S-C. KEYNOTE-119: a randomized phase III study of single-agent pembrolizumab (MK-3475) vs single-agent chemotherapy per physician's choice for metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34(15_suppl):TPS1102-TPS.

    Google Scholar 

  58. Tolaney S, Savulsky C, Aktan G, Xing D, Almonte A, Karantza V, et al. Abstract P5-15-02: phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Cancer Res. 2017;77(4 Suppl):P5-15-02-P5-15-02.

    Google Scholar 

  59. Nanda R, Liu MC, Yau C, Asare S, Hylton N, Veer LV, et al. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): results from I-SPY 2. J Clin Oncol. 2017;35(15_suppl):506.

    Google Scholar 

  60. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.

    Article  CAS  PubMed  Google Scholar 

  62. Emens LA, Braiteh FS, Cassier P, Delord J-P, Eder JP, Fasso M, et al. Abstract 2859: inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). Cancer Res. 2015;75(15 Suppl):2859.

    Article  Google Scholar 

  63. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016;34(13):1510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Adams S, Diamond JR, Hamilton EP, Pohlmann PR, Tolaney SM, Molinero L, et al. Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34(15_suppl):1009.

    Google Scholar 

  65. Emens LA, Adams S, Loi S, Schneeweiss A, Rugo HS, Winer EP, et al. IMpassion130: a phase III randomized trial of atezolizumab with nab-paclitaxel for first-line treatment of patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34(15_suppl):TPS1104-TPS.

    Google Scholar 

  66. Dirix L, Takacs I, Nikolinakos P, Jerusalem G, Arkenau H-T, Hamilton E, et al. Abstract S1-04: Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase Ib JAVELIN solid tumor trial. Cancer Res. 2016;76(4 Suppl):S1-04-S1.

    Google Scholar 

  67. Cantley LC. The phosphoinositide 3-kinase pathway. Science (New York, NY). 2002;296(5573):1655–7.

    Article  CAS  Google Scholar 

  68. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007;12(4):487–502.

    Article  CAS  PubMed  Google Scholar 

  70. Tripathy D, Chien AJ, Hylton N, Buxton MB, Ewing CA, Wallace AM, et al. Adaptively randomized trial of neoadjuvant chemotherapy with or without the Akt inhibitor MK-2206: graduation results from the I-SPY 2 trial. J Clin Oncol. 2015;33(15_suppl):524.

    Google Scholar 

  71. Kim SB, Dent R, Im SA, Espie M, Blau S, Tan AR, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18(10):1360–72.

    Article  CAS  PubMed  Google Scholar 

  72. Ambrogi F, Fornili M, Boracchi P, Trerotola M, Relli V, Simeone P, et al. Trop-2 is a determinant of breast cancer survival. PLoS One. 2014;9(5):e96993.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, et al. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21(17):3870–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharkey RM, McBride WJ, Cardillo TM, Govindan SV, Wang Y, Rossi EA, et al. Enhanced delivery of SN-38 to human tumor xenografts with an anti-trop-2-SN-38 antibody conjugate (sacituzumab govitecan). Clin Cancer Res. 2015;21(22):5131–8.

    Article  CAS  PubMed  Google Scholar 

  75. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6(26):22496–512.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, et al. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015;26(5):919–31.

    Article  CAS  PubMed  Google Scholar 

  77. Rothenberg ML. Topoisomerase I inhibitors: review and update. Ann Oncol. 1997;8(9):837–55.

    Article  CAS  PubMed  Google Scholar 

  78. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol. 2017;35(19):2141–8.

    Article  PubMed  Google Scholar 

  79. Goldenberg D, Cardillo T, Govindan S, Zalath M, Arrojo R, Sharkey R. Abstract P6-15-02: synthetic lethality in TNBC mediated by an anti-Trop-2 antibody-drug conjugate, sacituzumab govitecan (IMMU-132), when combined with paclitaxel or the PARP inhibitor, olaparib. Cancer Res. 2016;76(4 Suppl):P6-15-02-P6-15-02.

    Google Scholar 

  80. Cardillo TM, Sharkey RM, Rossi DL, Arrojo R, Mostafa AA, Goldenberg DM. Synthetic lethality exploitation by an anti-trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin Cancer Res. 2017;23(13):3405–15.

    Article  CAS  PubMed  Google Scholar 

  81. Rose AA, Grosset AA, Dong Z, Russo C, Macdonald PA, Bertos NR, et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res. 2010;16(7):2147–56.

    Article  CAS  PubMed  Google Scholar 

  82. Ripoll VM, Irvine KM, Ravasi T, Sweet MJ, Hume DA. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol. 2007;178(10):6557–66.

    Article  CAS  PubMed  Google Scholar 

  83. Rose AA, Pepin F, Russo C, Abou Khalil JE, Hallett M, Siegel PM. Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res. 2007;5(10):1001–14.

    Article  CAS  PubMed  Google Scholar 

  84. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778–84.

    Article  CAS  PubMed  Google Scholar 

  85. Naumovski L, Junutula JR. Glembatumumab vedotin, a conjugate of an anti-glycoprotein non-metastatic melanoma protein B mAb and monomethyl auristatin E for the treatment of melanoma and breast cancer. Curr Opin Mol Ther. 2010;12(2):248–57.

    CAS  PubMed  Google Scholar 

  86. Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281(15):10540–7.

    Article  CAS  PubMed  Google Scholar 

  87. Bendell J, Saleh M, Rose AA, Siegel PM, Hart L, Sirpal S, et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2014;32(32):3619–25.

    Article  CAS  PubMed  Google Scholar 

  88. Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, et al. EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol. 2015;33(14):1609–19.

    Article  CAS  PubMed  Google Scholar 

  89. Schmid P, Melisko M, Yardley DA, Blackwell K, Forero A, Ouellette G, et al. METRIC: a randomized international study of the antibody drug conjugate (ADC) glembatumumab vedotin (GV, CDX-011) in patients (pts) with metastatic gpNMB overexpressing triple-negative breast cancer (TNBC). Ann Oncol. 2016;27(suppl_6):309TiP-TiP.

    Article  Google Scholar 

  90. Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J. 2003;375(Pt 1):51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lopez V, Kelleher SL. Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. Exp Cell Res. 2010;316(3):366–75.

    Article  CAS  PubMed  Google Scholar 

  92. Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, et al. SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 2014;13(12):2991–3000.

    Article  CAS  PubMed  Google Scholar 

  93. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  94. Taylor KM, Hiscox S, Nicholson RI. Zinc transporter LIV-1: a link between cellular development and cancer progression. Trends Endocrinol Metab. 2004;15(10):461–3.

    Article  CAS  PubMed  Google Scholar 

  95. Unno J, Satoh K, Hirota M, Kanno A, Hamada S, Ito H, et al. LIV-1 enhances the aggressive phenotype through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. Int J Oncol. 2009;35(4):813–21.

    CAS  PubMed  Google Scholar 

  96. Lue HW, Yang X, Wang R, Qian W, RZ X, Lyles R, et al. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One. 2011;6(11):e27720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Forero-Torres A, Modi S, Specht J, Miller K, Weise A, Burris H, et al. Abstract P6-12-04: phase 1 study of the antibody-drug conjugate (ADC) SGN-LIV1A in patients with heavily pretreated metastatic breast cancer. Cancer Res. 2017;77(4 Suppl):P6-12-04-P6-12-04.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Nanda MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swoboda, A.T., Nanda, R. (2018). Molecular Profiling and Targeted Therapy for Triple-Negative Breast Cancer. In: Tan, A. (eds) Triple-Negative Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-69980-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69980-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69979-0

  • Online ISBN: 978-3-319-69980-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics