The Genetics of Triple-Negative Breast Cancer

Chapter

Abstract

With the advent of next generation sequencing, understanding genetic susceptibility to triple-negative breast cancer (TNBC) can lead to the identification, screening, and management of at-risk individuals and improved outcomes for those affected with this disease. The most commonly involved cancer susceptibility genes in TNBC are BRCA1 and BRCA2. Intense screening strategies have proven to identify affected cases, and risk-reducing surgical procedures have been shown to decrease the likelihood of developing cancer. Treatment of advanced TNBC remains a challenge. More emphasis should be placed on defining the genetic risk factors of TNBC which can ultimately lead to comprehensive efforts focused on cancer risk assessment and prevention.

Keywords

Breast cancer Germline hereditary mutations Inherited susceptibility BRCA1 BRCA2 

References

  1. 1.
    Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265:2088–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008;18:99–113.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317:2402–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee E, McKean-Cowdin R, Ma H, et al. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol. 2011;29:4373–80.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Atchley DP, Albarracin CT, Lopez A, et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26:4282–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012;21:134–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Tun NM, Villani G, Ong K, et al. Risk of having BRCA1 mutation in high-risk women with triple-negative breast cancer: a meta-analysis. Clin Genet. 2014;85:43–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Young SR, Pilarski RT, Donenberg T, et al. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer. 2009;9:86.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Evans DG, Howell A, Ward D, et al. Prevalence of BRCA1 and BRCA2 mutations in triple negative breast cancer. J Med Genet. 2011;48:520–2.CrossRefPubMedGoogle Scholar
  11. 11.
    Couch FJ, Hart SN, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33:304–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Fostira F, Tsitlaidou M, Papadimitriou C, et al. Prevalence of BRCA1 mutations among 403 women with triple-negative breast cancer: implications for genetic screening selection criteria: a Hellenic Cooperative Oncology Group Study. Breast Cancer Res Treat. 2012;134:353–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez-Angulo AM, Timms KM, Liu S, et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 2011;17:1082–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rummel S, Varner E, Shriver CD, et al. Evaluation of BRCA1 mutations in an unselected patient population with triple-negative breast cancer. Breast Cancer Res Treat. 2013;137:119–25.CrossRefPubMedGoogle Scholar
  15. 15.
    Greenup R, Buchanan A, Lorizio W, et al. Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Ann Surg Oncol. 2013;20:3254–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med. 1997;336:1401–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Comen E, Davids M, Kirchhoff T, et al. Relative contributions of BRCA1 and BRCA2 mutations to “triple-negative” breast cancer in Ashkenazi Women. Breast Cancer Res Treat. 2011;129:185–90.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kurian AW, Fish K, Shema SJ, et al. Lifetime risks of specific breast cancer subtypes among women in four racial/ethnic groups. Breast Cancer Res. 2010;12:R99.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huo D, Ikpatt F, Khramtsov A, et al. Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J Clin Oncol. 2009;27:4515–21.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fackenthal JD, Zhang J, Zhang B, et al. High prevalence of BRCA1 and BRCA2 mutations in unselected Nigerian breast cancer patients. Int J Cancer. 2012;131:1114–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Churpek JE, Walsh T, Zheng Y, et al. Inherited predisposition to breast cancer among African American women. Breast Cancer Res Treat. 2015;149:31–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Daly MB, Pilarski R, Axilbund JE, et al. Genetic/familial high-risk assessment: breast and ovarian, version 2.2015. J Natl Compr Canc Netw. 2016;14:153–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Masciari S, Dillon DA, Rath M, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat. 2012;133:1125–30.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hwang SJ, Lozano G, Amos CI, et al. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003;72:975–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Figueiredo BC, Sandrini R, Zambetti GP, et al. Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation. J Med Genet. 2006;43:91–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Robson ME, Bradbury AR, Arun B, et al. American Society of Clinical Oncology Policy Statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2015;33:3660–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Berliner JL, Fay AM, Cummings SA, et al. NSGC practice guideline: risk assessment and genetic counseling for hereditary breast and ovarian cancer. J Genet Couns. 2013;22:155–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Weitzel JN, Blazer KR, MacDonald DJ, et al. Genetics, genomics, and cancer risk assessment: state of the art and future directions in the era of personalized medicine. CA Cancer J Clin. 2011;61:327–59.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23:1111–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Warner E, Plewes DB, Hill KA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292:1317–25.CrossRefPubMedGoogle Scholar
  31. 31.
    Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351:427–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Lehman CD, Lee JM, DeMartini WB, et al. Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst. 2016;108. pii: djv373.Google Scholar
  33. 33.
    Li X, You R, Wang X, et al. Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: a meta-analysis and systematic review. Clin Cancer Res. 2016;22:3971–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Evans DG, Gaarenstroom KN, Stirling D, et al. Screening for familial ovarian cancer: poor survival of BRCA1/2 related cancers. J Med Genet. 2009;46:593–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101:80–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kauff ND, Domchek SM, Friebel TM, et al. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol. 2008;26:1331–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Irvin WJ Jr, Carey LA. What is triple-negative breast cancer? Eur J Cancer. 2008;44:2799–805.CrossRefPubMedGoogle Scholar
  38. 38.
    Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.CrossRefPubMedGoogle Scholar
  39. 39.
    Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Solid Tumor Oncology and Investigational TherapeuticsLevine Cancer Institute, Carolinas HealthCare SystemCharlotteUSA
  2. 2.Department of Internal Medicine, Division of Hematology OncologyUniversity of Chicago Medical CenterChicagoUSA

Personalised recommendations