Skip to main content

Apoplastic Barriers: Their Structure and Function from a Historical Perspective

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 23))

Abstract

The multicellular plant body is a complex structure that is internally organized into organs and tissues specialized for particular functions. The outer boundary of a plant body is delimited by the epidermis, and its specific modifications allow controlled material exchange with the surrounding environment. The inner space of a plant body is subdivided into functional domains. Such division is known to take place in both the symplastic and apoplastic spaces of organs and tissues. The apoplast is composed mostly of intercellular spaces and porous cell walls. It surrounds the symplast, which is bordered by the plasma membrane. The internal subdivision of apoplastic space is carried out by so-called apoplastic barriers, which are cell layers with modified cell walls where lowered porosity decreases the passive flow of solutes, water, gasses, and regulatory molecules. There is a well-established role of the endodermis in the function of the root in vascular plants. However, the root endodermis is not the only “barrier” essential for plant function and development. Similar barriers are known to be present in stems, leaves, and the root periphery. This review focuses on the historical course of our understanding of the development, structure, and function of these protective layers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alassimone J, Naseer S, Geldner N (2010) A developmental framework for endodermal differentiation and polarity. Proc Natl Acad Sci U S A 107:5214–5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alassimone J, Roppolo D, Geldner N, Vermeer JE (2012) The endodermis – development and differentiation of the plant’s inner skin. Protoplasma 249:433–443

    Article  PubMed  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22:1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Enstone DE, Peterson CA (1998) Indirect evidence for bulk water flow in root cortical cell walls of three dicotyledonous species. Planta 207:1–7

    Article  CAS  Google Scholar 

  • Andersen TG, Barberon M, Geldner N (2015) Suberization—the second life of an endodermal cell. Curr Opin Plant Biol 28:9–15

    Article  CAS  PubMed  Google Scholar 

  • Arisz W (1956) Significance of the symplasm theory for transport across the root. Protoplasma 46:5–62

    Article  Google Scholar 

  • Armstrong J, Armstrong W (2001) Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot 88:1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Arnold A (1952) Über den Funktionsmechanismus der Endodermiszellen der Wurzeln. Protoplasma 41:189–211

    Article  Google Scholar 

  • Barberon M (2017) The endodermis as a checkpoint for nutrients. New Phytol 213:1604–1610

    Article  CAS  PubMed  Google Scholar 

  • Barberon M, Geldner N (2014) Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol 166:528–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barberon M, Dubeaux G, Kolb C, Isono E, Zelazny E, Vert G (2014) Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 111:8293–8298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164:1–13

    Article  CAS  Google Scholar 

  • Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE (2009) Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5:1–12

    Article  CAS  Google Scholar 

  • Behrisch R (1926) Zur Kenntnis der Endodermiszelle. Ber Deutsch. Bot Ges 44:162–164

    Google Scholar 

  • Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser M-T, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70

    CAS  PubMed  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bonnett HT (1968) The root endodermis: fine structure and function. J Cell Biol 37:199–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Bramley H, Turner NC, Turner DW, Tyerman SD (2007) Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways. Plant Cell Environ 30:861–874

    Article  PubMed  Google Scholar 

  • Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66:111–116

    Article  CAS  PubMed  Google Scholar 

  • Bryant A (1934) A demonstration of the connection of the protoplasts of the endodermal cells with the Casparian strips in the roots of barley. New Phytol 33:231–231

    Article  Google Scholar 

  • Buscalioni L (1898) Un nuovo reattivo per l’istologia vegetale. Estr dal Giornale Malpighia Anno 12

    Google Scholar 

  • Caspary R (1858) Die Hydrilleen. Jahrb Wiss Bot 1:377–512

    Google Scholar 

  • Caspary R (1865) Bemerkung über die schutzscheide und die bildung des stammes und der wurzel. Jahrb Wiss Bot 4:101–124

    Google Scholar 

  • Chevreul (1815) Sur le rnoyen d’analyser plusieurs matieres vegetales et le liege eu particulier. Ann Chim 96:141–156

    Google Scholar 

  • Cholewa E, Peterson CA (2004) Evidence for symplastic involvement in the radial movement of calcium in onion roots. Plant Physiol 134:1793–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson D, Robards A, Stephens J, Stark M (1987) Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers. Plant Cell Environ 10:83–93

    Article  CAS  PubMed  Google Scholar 

  • Colmer T, Bloom A (1998) A comparison of NH4+ and NO3– net fluxes along roots of rice and maize. Plant Cell Environ 21:240–246

    Article  CAS  Google Scholar 

  • Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F (2009) CYP86B1 is required for very long chain ω-hydroxyacid and α, ω-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 150:1831–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Kong D, Liu X, Hao Y (2014) SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Plant J 78:319–327

    Article  CAS  PubMed  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415

    Article  CAS  PubMed  Google Scholar 

  • De Barry A (1884) Comparative anatomy of the vegetative organs of the phanerogams and ferns. The Clarendon, Oxford

    Book  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    Article  CAS  PubMed  Google Scholar 

  • Dinneny JR (2014) A gateway with a guard: How the endodermis regulates growth through hormone signaling. Plant Sci 214:14–19

    Article  CAS  PubMed  Google Scholar 

  • Doblas VG, Smakowska-Luzan E, Fujita S, Alassimone J, Barberon M, Madalinski M, Belkhadir Y, Geldner N (2017) Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science 355:280–284

    Article  CAS  PubMed  Google Scholar 

  • Enstone DE, Peterson CA (1992) The apoplastic permeability of root apices. Can J Bot 70:1502–1512

    Article  CAS  Google Scholar 

  • Enstone DE, Peterson CA (1997) Suberin deposition and band plasmolysis in the corn (Zea mays L.) root exodermis. Can J Bot 75:1188–1199

    Article  Google Scholar 

  • Enstone D, Peterson C (1998) Effects of exposure to humid air on epidermal viability and suberin deposition in maize (Zea mays L.) roots. Plant Cell Environ 21:837–844

    Article  CAS  Google Scholar 

  • Enstone DE, Peterson CA (2005) Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ 28:444–455

    Article  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.) Plant Cell Environ 33:702–716

    CAS  PubMed  Google Scholar 

  • Ferguson I, Clarkson D (1975) Ion transport and endodermal suberization in the roots of Zea mays. New Phytol 75:69–79

    Article  CAS  Google Scholar 

  • Ferguson I, Clarkson D (1976) Simultaneous uptake and translocation of magnesium and calcium in barley (Hordeum vulgare L.) roots. Planta 128:267–269

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Schreiber L (2007) Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996) SGR1, SGR2, and SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol 110:945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430

    Article  CAS  PubMed  Google Scholar 

  • Geldner N (2013) The endodermis. Annu Rev Plant Biol 64:531–558

    Article  CAS  PubMed  Google Scholar 

  • Gilson E (1890) La suberine et les cellules du liège. La Cellule 6:63

    Google Scholar 

  • Graca J (2015) Suberin: the biopolyester at the frontier of plants. Front Chem 3:1–11

    Article  Google Scholar 

  • Graca J, Pereira H (2000) Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J Agric Food Chem 48:5476–5483

    Article  CAS  PubMed  Google Scholar 

  • Haas DL, Carothers ZB (1975) Some ultrastructural observations on endodermal cell development in Zea mays roots. Am J Bot 62:336–348

    Article  Google Scholar 

  • Haas DL, Carothers ZB, Robbins RR (1976) Observations on the phi-thickenings and Casparian strips in Pelargonium roots. Am J Bot 63:863–867

    Article  Google Scholar 

  • Haberlandt G (1884) Physiologische Pflanzenanatomie. Wilhelm Engelman, Leipzig

    Google Scholar 

  • Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62:305–323

    Article  CAS  PubMed  Google Scholar 

  • Harrison-Murray R, Clarkson DT (1973) Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo. Planta 114:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hayward H, Spurr WB (1943) Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot Gaz 105:152–164

    Article  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser M-T, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    Article  CAS  PubMed  Google Scholar 

  • Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59:2347–2360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hose E, Clarkson D, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci U S A 110:14498–14503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmbach L, Hématy K, De Bellis D, Barberon M, Fujita S, Ursache R, Daraspe J, Geldner N (2017) Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nat Plants 3:17058

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Borghi M, Wang P, Danku JM, Kalmbach L, Hosmani PS, Naseer S, Fujiwara T, Geldner N, Salt DE (2015) The MYB36 transcription factor orchestrates Casparian strip formation. Proc Natl Acad Sci U S A 112:10533–10538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamula S, Peterson C, Mayfield C (1994) The plasmalemma surface area exposed to the soil solution is markedly reduced by maturation of the exodermis and death of the epidermis in onion roots. Plant Cell Environ 17:1183–1193

    Article  Google Scholar 

  • Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219:41–47

    Article  CAS  PubMed  Google Scholar 

  • Karsten H (1849) Die Vegetationsorgane der Palmen: Ein Beitrag zur vergleichend Anatomie und Physiologie. Königlichen Akademie der Wissenschaften, Berlin

    Google Scholar 

  • Klinge J (1879) Vergleichend histiologische Untersuchnung der Gramineen-und Cyperaceen-wurzeln, insbesondere der Wurzel-leitbündel. Mém Acad Imp Sci St-Pétersbourg 26:1–92

    Google Scholar 

  • Knipfer T, Fricke W (2010) Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). New Phytol 187:159–170

    Article  PubMed  Google Scholar 

  • Kolattukudy P (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  PubMed  Google Scholar 

  • Končalová H, Květ J, Pokorný J, Hauser V (1993) Effect of flooding with sewage water on three wetland sedges. Wetl Ecol Manag 2:199–211

    Article  Google Scholar 

  • Kotula L, Ranathunge K, Schreiber L, Steudle E (2009) Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot 60:2155–2167

    Article  CAS  PubMed  Google Scholar 

  • Kraus G (1866) Ueber den Bau der Cycadeenfiedern. Jahrb Wiss Bot 4:305–347

    Google Scholar 

  • Krishnamurthy P, Ranathunge K, Franke R, Prakash H, Schreiber L, Mathew M (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.) Planta 230:119–134

    Article  CAS  PubMed  Google Scholar 

  • Kroemer K (1903) Wurzelhaut, Hypodermis und Endodermis der Angiospermenwurzel. Biblioth Bot 59:1–160

    Google Scholar 

  • Kumar S, Soukup M, Elbaum R (2017) Silicification in grasses: variation between different cell types. Front Plant Sci 8:1–8

    Google Scholar 

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  CAS  PubMed  Google Scholar 

  • Lehmann H, Stelzer R, Holzamer S, Kunz U, Gierth M (2000) Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots. Planta 211:816–822

    Article  CAS  PubMed  Google Scholar 

  • Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:739–752

    CAS  Google Scholar 

  • Li B, Kamiya T, Kalmbach L, Yamagami M, Yamaguchi K, Shigenobu S, Sawa S, Danku JM, Salt DE, Geldner N (2017) Role of LOTR1 in nutrient transport through organization of spatial distribution of root endodermal barriers. Curr Biol 27:758–765

    Article  CAS  PubMed  Google Scholar 

  • Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN (2015) MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proc Natl Acad Sci U S A 112:12099–12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Goedhart J, Schneijderberg M, Terpstra I, Shimotohno A, Bouchet BP, Akhmanova A, Gadella TW Jr, Heidstra R, Scheres B, Blilou I (2015a) SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement. Plant J 84:773–784

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Smet W, Cruz-Ramírez A, Castelijns B, de Jonge W, Mähönen AP, Bouchet BP, Perez GS, Akhmanova A, Scheres B (2015b) Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27:1185–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Peterson CA (2001) Development of cell wall modifications in the endodermis and exodermis of Allium cepa roots. Can J Bot 79:621–634

    Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Meyer A (1891) Wissenschaftliche Drogenkunde: ein illustriertes Lehrbuch der Pharmakognosie u. eine wissenschaftliche Anleitung zur eingehenden botanischen Untersuchung pflanzlicher Drogen für Apotheker. Gaertner, Berlin

    Google Scholar 

  • Meyer CJ, Seago JL Jr, Peterson CA (2009) Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Ann Bot 103:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao YC, Liu CJ (2010) ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc Natl Acad Sci U S A 107:22728–22733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009a) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009b) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417–1417

    Article  CAS  PubMed  Google Scholar 

  • Mohl H (1847) Untersuchung der Frage: Bildet die Cellulose die Grundlage sämmtlicher vegetabilischen Membranen? Bot Zeitung 5:497–505

    Google Scholar 

  • Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M (2009) Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiol 151:1317–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon G, Peterson CA, Peterson R (1984) Structural, chemical, and permeability changes following wounding in onion roots. Can J Bot 62:2253–2259

    Article  Google Scholar 

  • Nägeli CW (1858) Das Wachsthum des Stammes und der Wurzel bei den Gefässpflanzen und die Anordung des Gefässstrange in Stengel. Beitr Wiss Bot:1–156

    Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Matsubayashi Y (2017) A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 355:284–286

    Article  CAS  PubMed  Google Scholar 

  • Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci U S A 109:10101–10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L (2013) Apoplastic diffusion barriers in Arabidopsis. Arabidopsis Book 11:1–35

    Article  Google Scholar 

  • Nikolai O (1865) Wachstum der Wurzel. Schriften Kongl Phys Okon Ges Konigsberg 7:33–76

    Google Scholar 

  • Oparka KJ (1994) Plasmolysis: new insights into an old process. New Phytol 126:571–591

    Article  CAS  Google Scholar 

  • Oudemans CAJA (1861) Ueber den Sitz der Oberhaut bei den Luftwurzeln der Orchideen. Verh Kon Ned Akad Wetensch 9:1–32

    Google Scholar 

  • Perumalla C, Peterson CA (1986) Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can J Bot 64:1873–1878

    Article  Google Scholar 

  • Perumalla CJ, Peterson CA, Enstone DE (1990) A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot J Linn Soc 103:93–112

    Article  Google Scholar 

  • Peterson C, Edgington L (1975) Uptake of the systemic fungicide methyl 2-benzimidazolecarbamate and the fluorescent dye PTS [trisodium, 3-hydroxy-5,8,10-pyrenetrisulfonate] by onion roots. Phytopathology 54:1254–1259

    Article  Google Scholar 

  • Peterson C, Emanuel M (1983) Casparian strips occur in onion root hypodermal cells: evidence from band plasmolysis. Ann Bot 51:135–137

    Article  Google Scholar 

  • Peterson CA, Enstone DE (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol Plant 97:592–598

    Article  CAS  Google Scholar 

  • Peterson CA, Perumalla CJ (1990) A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot J Linn Soc 103:113–125

    Article  Google Scholar 

  • Peterson CA, Murrmann M, Steudle E (1993) Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190:127–136

    Article  CAS  Google Scholar 

  • Pfister A, Barberon M, Alassimone J, Kalmbach L, Lee Y, Vermeer JE, Yamazaki M, Li G, Maurel C, Takano J (2014) A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. elife 3:1–20

    Article  CAS  Google Scholar 

  • Pfitzer E (1867) Ueber die Schutzscheide der deutschen Equisetaceen. Jahrb Wiss Bot 6:297–361

    Google Scholar 

  • Planchon J-E, Van Houtte L (1851) La Victoria regia: au point de vue horticole et botanique: avec des observations sur la structure et les affinités des Nymphéacées. L. Van Houtte, Gand, Belgium

    Google Scholar 

  • Pont-Lezica R, McNally J, Pickard B (1993) Wall-to-membrane linkers in onion epidermis: some hypotheses. Plant Cell Environ 16:111–123

    Article  CAS  Google Scholar 

  • Pozuelo JM, Espelie KE, Kolattukudy P (1984) Magnesium deficiency results in increased suberization in endodermis and hypodermis of corn roots. Plant Physiol 74:256–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priestley JH (1922) Further observations upon the mechanism of root pressure. New Phytol 21:41–47

    Article  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205

    CAS  PubMed  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005a) Blockage of apoplastic bypass-flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant Cell Environ 28:121–133

    Article  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005b) A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.) Plant Cell Environ 28:1450–1462

    Article  CAS  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era – new interest for an old polymer. Plant Sci 180:399–413

    Article  CAS  PubMed  Google Scholar 

  • Redjala T, Zelko I, Sterckeman T, Legué V, Lux A (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241–248

    Article  CAS  Google Scholar 

  • Reinhardt D, Rost T (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot 35:563–574

    Article  CAS  Google Scholar 

  • Rimbach A (1893) Ueber die Ursache der Zellhautwellung in der Exodermis der Wurzeln. Ber Deutsch. Bot Ges 11:467–472

    Google Scholar 

  • Robards A, Robb ME (1974) The entry of ions and molecules into roots: an investigation using electron-opaque tracers. Planta 120:1–12

    Article  CAS  PubMed  Google Scholar 

  • Robards A, Jackson SM, Clarkson D, Sanderson J (1973) The structure of barley roots in relation to the transport of ions into the stele. Protoplasma 77:291–311

    Article  Google Scholar 

  • Roppolo D, Geldner N (2012) Membrane and walls: who is master, who is servant? Curr Opin Plant Biol 15:608–617

    Article  CAS  PubMed  Google Scholar 

  • Roppolo D, De Rybel B, Tendon VD, Pfister A, Alassimone J, Vermeer JE, Yamazaki M, Stierhof YD, Beeckman T, Geldner N (2011) A novel protein family mediates Casparian strip formation in the endodermis. Nature 473:380–383

    Article  CAS  PubMed  Google Scholar 

  • Roppolo D, Boeckmann B, Pfister A, Boutet E, Rubio MC, Dénervaud-Tendon V, Vermeer JE, Gheyselinck J, Xenarios I, Geldner N (2014) Functional and evolutionary analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN family. Plant Physiol 165:1709–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosene HF (1937) Distribution of the velocities of absorption of water in the onion root. Plant Physiol 12:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufz de Lavison MJ (1910) Du monde de penetration de quelques sels dans la plante vivande. Role de l’endoderme. Rev Gen Bot 22:225–241

    Google Scholar 

  • Russow E (1872) Vergleichende Untersuchungen betreffend die Histiologie (Histiographie und Histiogenie) der vegetativen und Sporen-bildenden Organe und die Entwickelung der Sporen der Leitbündel-Kryptogamen: mit Berücksichtigung der Histiologie der Phanerogamen, ausgehend von der Betrachtung der Marsiliaceen. Commissionnaires de l’Académie Impériale des sciences, St. Pétersbourg

    Google Scholar 

  • Sanderson J (1983) Water uptake by different regions of the barley root. Pathways of radial flow in relation to development of the endodermis. J Exp Bot 34:240–253

    Article  Google Scholar 

  • Scheres B, Di Laurenzio L, Willemsen V, Hauser M-T, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62

    CAS  Google Scholar 

  • Schnee L (1936) Bandplasmolyse der Endodermiszellen von Cobaea scandens. Protoplasma 26:97–99

    Article  CAS  Google Scholar 

  • Schoute JC (1903) Die Stelär-theorie. G. Fischer, Jena

    Book  Google Scholar 

  • Schraut D, Heilmeier H, Hartung W (2005) Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency. J Exp Bot 56:879–886

    Article  CAS  PubMed  Google Scholar 

  • Schreiber L (1996) Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin. Planta 199:596–601

    Article  CAS  Google Scholar 

  • Schreiber L, Franke RB (2011) Endodermis and exodermis in roots. eLS. Wiley, Chichester

    Google Scholar 

  • Schreiber L, Franke R, Hartmann K (2005) Effects of NO3- deficiency and NaCl stress on suberin deposition in rhizo-and hypodermal (RHCW) and endodermal cell walls (ECW) of castor bean (Ricinus communis L.) roots. Plant Soil 269:333–339

    Article  CAS  Google Scholar 

  • Schwendener S (1883) Die Schutzscheiden und ihre Verstärkungen. Abhandlungen der königlichen Akademie der Wissenschaften zu Berlin

    Google Scholar 

  • Scott FM (1963) Root hair zone of soil-grown roots. Nature 199:1009–1010

    Article  Google Scholar 

  • Scott LI, Priestley JH (1928) The root as an absorbing organ. I. A reconsideration of the entry of water and salts in the absorbing region. New Phytol 27:125–140

    Google Scholar 

  • Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99

    Article  CAS  PubMed  Google Scholar 

  • Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, Takanashi H, Ranathunge K, Franke RB, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K (2014) RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J 80:40–51

    Article  CAS  PubMed  Google Scholar 

  • Slewinski TL, Anderson AA, Zhang C, Turgeon R (2012) Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiol 53:2030–2037

    Article  CAS  PubMed  Google Scholar 

  • Soukup A, Votrubová O, Čížková H (2002) Development of anatomical structure of roots of Phragmites australis. New Phytol 153:277–287

    Article  Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubova O (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    Article  CAS  PubMed  Google Scholar 

  • Soukup M, Martinka M, Cigan M, Ravaszova F, Lux A (2014) New method for visualization of silica phytoliths in Sorghum bicolor roots by fluorescence microscopy revealed silicate concentration-dependent phytolith formation. Planta 240:1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Murrmann M, Peterson CA (1993) Transport of water and solutes across maize roots modified by puncturing the endodermis (further evidence for the composite transport model of the root). Plant Physiol 103:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasburger E, Porter HC (1898) A text-book of botany. Macmillan, London

    Book  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant J 54:30–42

    Article  CAS  PubMed  Google Scholar 

  • Tylová E, Pecková E, Blascheová Z, Soukup A (2017) Casparian bands and suberin lamellae in exodermis of lateral roots – an important trait of roots system response to abiotic stress factors. Ann Bot 120:71–85

    Article  PubMed  Google Scholar 

  • Ursprung A, Blum G (1921) Zur Kenntnis der Saugkraft IV. Die Absorptionszone der Wurzel. Der Endodermissprung. Ber Deutsch Bot Ges 39:70–79

    Google Scholar 

  • Ursprung AB, Blum G (1923) Zur Kenntnis der Saugkraft VII. Eine neue, vereinfachte Methode zur Messung der Saugkraft. Ber Deutsch Bot Ges 41:338–343

    Google Scholar 

  • Van Fleet D (1950) A comparison of histochemical and anatomical characteristics of the hypodermis with the endodermis in vascular plants. Am J Bot 37:721–725

    Article  Google Scholar 

  • van Fleet DS (1961) Histochemistry and function of the endodermis. Bot Rev 27:165–220

    Article  Google Scholar 

  • Vishwanath SJ, Delude C, Domergue F, Rowland O (2015) Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep 34:573–586

    Article  CAS  PubMed  Google Scholar 

  • von Guttenberg H (1940) Der Primäre Bau der Angiospermenwurzel. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • von Höhnel F (1878) Über den Kork und verkorkte Gewebe uberhaupt. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Classe 76:507–662

    Google Scholar 

  • Voxeur A, Wang Y, Sibout R (2015) Lignification: different mechanisms for a versatile polymer. Curr Opin Plant Biol 23:83–90

    Article  CAS  PubMed  Google Scholar 

  • Vuillemin P (1884) De la valeur des caractères anatomiques au point de vue de la classification des végétaux: tige des composées. J.-B. Baillière, Paris

    Google Scholar 

  • Waduwara CI, Walcott SE, Peterson CA (2008) Suberin lamellae of the onion root endodermis: their pattern of development and continuity. Botany 86:623–632

    Article  Google Scholar 

  • Welch D, Hassan H, Blilou I, Immink R, Heidstra R, Scheres B (2007) Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev 21:2196–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisselingh Cv (1886) Sur’l Endoderme. Extrait des Archives Neérlandandaises 20

    Google Scholar 

  • Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26:3569–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zankowski P, Fraser D, Reynolds T (1987) The developmental anatomy of velamen and exodermis in aerial roots of Epidendrum ibaguense. Lindleyana 2:1–7

    Google Scholar 

  • Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata (identification of the biopolymers lignin and suberin). Plant Physiol 113:1223–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeier J, Ruel K, Ryser U, Schreiber L (1999) Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots. Planta 209:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, Ye ZH (2011) Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol 52:1856–1871

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegenspeck H (1921) Über die Rolle des Casparyschen streifens der Endodermis und analoge Bildungen. Ber Deutsch. Bot Ges 39:302–310

    Google Scholar 

  • Zimmermann A (1892) Botanische mikrotechnik. H. Laupp, Tubingen

    Google Scholar 

  • Zimmermann HM, Steudle E (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta 206:7–19

    Article  CAS  Google Scholar 

  • Zimmermann HM, Hartmann K, Schreiber L, Steudle E (2000) Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.) Planta 210:302–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The work was supported by Czech Ministry of Education, Youth and Sports: Project NPUI-LO1417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Soukup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soukup, A., Tylová, E. (2018). Apoplastic Barriers: Their Structure and Function from a Historical Perspective. In: Sahi, V., Baluška, F. (eds) Concepts in Cell Biology - History and Evolution. Plant Cell Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-69944-8_8

Download citation

Publish with us

Policies and ethics