Skip to main content

Plant Cell Biology: When, How, and Why?

  • Chapter
  • First Online:
  • 1787 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 23))

Abstract

About 250 years before Sachs’s definition of the cell, Robert Hooke observed cells for the first time on cork. Not only did Hooke’s observations start a new wave in the study of plant biology, but it also gave us the term “cell” (Hooke 1665; Gest 2009). The etymological roots of the term lie in the Latin word cellulae, which means hexagonal cells of the honeycomb (Mazzarello 1999). Soon after Hooke made his observations and coined the term “cell,” Antony van Leeuwenhoek discovered motile microorganisms (Ford 1995; Dunn and Jones 2004; Zwick and Schmidt 2014; Lane 2015; Wollman et al. 2015; Zuidervaart and Anderson 2016). Later, Marcello Malpighi and Nehemiah Grew published detailed observations of the different plant organs and tissues (Malpighi 1679; Grew 1682). Grew described the honeycomb-like cells, but also other forms of cells, which formed the bark and the pith (Grew 1682).

Julius Sachs (1875) defined cells as follows: “The substance of plants is not homogeneous, but is composed of small structures generally indistinguishable by the naked eye; and each of these, at least for a time, is a whole complete in itself, being composed of solid, soft, and fluid layers, different in their chemical nature, and disposed concentrically from without inwards. These structures are termed Cells.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baars BJ, Edelman DB (2012) Consciousness, biology and quantum hypotheses. Phys Life Rev 9:285–294

    Article  PubMed  Google Scholar 

  • Baker JR (1948) The cell theory: a restatement, history and critique. Part I. Q J Microsc Sci 89:103–125

    CAS  PubMed  Google Scholar 

  • Baker JR (1949) The cell-theory: a restatement, history, and critique. Q J Microsc Sci 90:87–108

    CAS  PubMed  Google Scholar 

  • Baluška F (2011) Evolution in revolution. A paradigm shift in our understanding of life and biological evolution. Commun Integr Biol 4:521–523

    Article  PubMed Central  Google Scholar 

  • Baluška F, Hlavačka A (2005) Plant formins come of age: something special about cross-walls. New Phytol 168:499–503

    Article  PubMed  Google Scholar 

  • Baluška F, Lyons S (2018) Symbiotic origin of eukaryotic nucleus: from cell body to neo-energide. In: Baluška F, Sahi VP (eds) Concepts in cell biology – history and evolution, Plant cell monographs. Springer, Heidelberg

    Google Scholar 

  • Baluška F, Mancuso S (2009a) Plant neurobiology: from stimulus perception to adaptive behavior of plants, via integrated chemical and electrical signaling. Plant Signal Behav 4:475–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Mancuso S (2009b) Deep evolutionary origins of neurobiology: turning the essence of ‘neural’ upside-down. Commun Integr Biol 2:60–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Vitha S, Barlow PW, Volkmann D (1997) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72:113–121

    PubMed  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004a) Eukaryotic cells and their cell bodies: cell theory revised. Ann Bot 94:9–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004b) Cell bodies in a cage. Nature 428:37

    Article  Google Scholar 

  • Baluška F, Volkmann D, Menzel D, Barlow PW (2012) Strasburger’s legacy to mitosis and cytokinesis and its relevance for the cell theory. Protoplasma 249:1151–1162

    Article  PubMed  Google Scholar 

  • Baluška F, Yokawa K, Mancuso S, Baverstock K (2016) Understanding of anesthesia – why consciousness is essential for life and not based on genes. Commun Integr Biol 9:e1238118

    Article  PubMed  PubMed Central  Google Scholar 

  • Benda C (1898) Über die spermatogenese der vertebraten und höherer evertebraten. II. Die histiogenese der spermien. Arch Anat Physiol 73:393–398

    Google Scholar 

  • Berche P (2012) Louis Pasteur, from crystals of life to vaccination. Clin Microbiol Infect 18:1–6

    Article  CAS  PubMed  Google Scholar 

  • Blancaflor EB, Gilroy S (2000) Plant cell biology in the new millennium: new tools and new insights. Am J Bot 87:1547–1560

    Article  CAS  PubMed  Google Scholar 

  • Brown R (1833) On the organs and mode of fecundation in Orchideae and Asclepiadeae. Trans Linn Soc Lond 16:685–745

    Article  Google Scholar 

  • Calvo P, Sahi V, Trewavas A (2017) Are plants sentient? Plant Cell Environ 40(11):2858–2869. https://doi.org/10.1111/pce.13065

  • Casadevall A, Fang FC (2016) Revolutionary science. MBio 7:e00158

    PubMed  PubMed Central  Google Scholar 

  • Craddock TJA, Kurian P, Preto J, Sahu K, Hameroff SR, Klobukowski M, Tuszynski JA (2017) Anesthetic alterations of collective terahertz oscillations in tubulin correlate with clinical potency: implications for anesthetic action and post-operative cognitive dysfunction. Sci Rep 7:9877

    Article  PubMed  PubMed Central  Google Scholar 

  • Cvrčková F (2018) A brief history of eukaryotic cell cycle research. In: Baluška F, Sahi VP (eds) Concepts in cell biology – history and evolution, Plant cell monographs. Springer, Heidelberg

    Google Scholar 

  • Dunn GA, Jones GE (2004) Cell motility under the microscope: Vorsprung durch Technik. Nat Rev Mol Cell Biol 5:667–672

    Article  CAS  PubMed  Google Scholar 

  • Ford BJ (1995) First steps in experimental microscopy. Leeuwenhoek as practical scientist. Microscope 43:47–57

    Google Scholar 

  • Gest H (2009) Homage to Robert Hooke (1635–1703): new insights from the recently discovered Hooke Folio. Perspect Biol Med 52:392–399

    Article  PubMed  Google Scholar 

  • Golgi C (1898) Sur la structure des cellules nerveuses. Arch Ital Biol 30:60–71

    Google Scholar 

  • Grémiaux A, Yokawa K, Mancuso S, Baluška F (2014) Plant anesthesia supports similarities between animals and plants: Claude Bernard’s forgotten studies. Plant Signal Behav 9:e27886

    Article  PubMed  PubMed Central  Google Scholar 

  • Grew N (1682) The anatomy of plants with an idea of a philosophical history of plants, and several other lectures read before the royal society. Rawlins W, London

    Google Scholar 

  • Griffiths N, Jaipargas EA, Wozny MR, Barton KA, Mathur N, Delfosse K, Mathur J (2016) Photo-convertible fluorescent proteins as tools for fresh insights on subcellular interactions in plants. J Microsc 263:148–157

    Article  CAS  PubMed  Google Scholar 

  • Guerra C, Capitelli M, Longo S (2012) The role of paradigms in science: a historical perspective. In: L’Abate L (ed) Paradigms in theory construction. Springer, New York. https://doi.org/10.1007/978-1-4614-0914-4_2

    Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Akad Wiss Wien Math Naturwiss 111:69–92

    Google Scholar 

  • Harris H (2000) The birth of the cell. Yale University Press, New Haven

    Google Scholar 

  • Hofmeister W (1867) Die Lehre von der Pflanzenzelle. In: Hofmeister W (ed) Handbuch der Physiologischen Botanik I-1. Engelmann W, Leipzig

    Google Scholar 

  • Hooke R (1665) Micrographia, or some physiological descriptions of minute bodies made by magnifying glasses. Royal Society, London

    Google Scholar 

  • Kaiser D (2012) In retrospect: the structure of scientific revolutions. Nature 484:164–166

    CAS  Google Scholar 

  • Kuhn T (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Lane N (2015) The unseen world: reflections on Leeuwenhoek (1677) ‘concerning little animals’. Philos Trans R Soc Lond Ser B Biol Sci 370:1666

    Article  Google Scholar 

  • Lombard J (2014) Once upon a time the cell membranes: 175 years of cell boundary research. Biol Direct 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Malpighi M (1679) Anatome plantarum: Pars altera (in Latin). Johannis Martyn, London

    Google Scholar 

  • Martin C (2017) Wilhelm Hofmeister and the foundations of plant science. Curr Biol 27:R853–R909

    Article  CAS  PubMed  Google Scholar 

  • Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1:E13–E15

    Article  CAS  PubMed  Google Scholar 

  • Mazzarello P, Garbarino C, Calligaro A (2009) How Camillo Golgi became “the Golgi”. FEBS Lett 583:3732–3737

    Article  CAS  PubMed  Google Scholar 

  • Němec B (1901) Die Reizleitung und die reizleitenden Strukturen bei den Pflanzen. Gustav Fischer, Jena

    Google Scholar 

  • Nick P (2012) Eduard Strasburger – dead for a century, but still alive. Protoplasma 249:857–858

    Article  PubMed  Google Scholar 

  • Nick P, Chong K (2012) Why the taxpayer profits from plant cell biology – special issue “Applied Plant Cell Biology”. Protoplasma 249:S77–S79

    Article  PubMed  Google Scholar 

  • Opatrný Z, Nick P, Petrášek J (2014) Plant cell strains in fundamental research and applications. In: Nick P, Opatrny Z (eds) Applied plant cell biology, Plant cell monographs, Vol 22. Springer, Heidelberg, pp 455–481. https://www.botanik.kit.edu/botzell/downloads/Pub_Opatrny_2014.pdf

  • Pagliarini DJ, Rutter F (2013) Hallmarks of a new era in mitochondrial biochemistry. Genes Dev 27:2615–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasteur L (1864) On spontaneous generation. Rev Sci I (1863–64):257–264

    Google Scholar 

  • Perouansky M (2012) The quest for a unified model of anesthetic action: a century in Claude Bernard’s shadow. Anesthesiology 117:465–474

    Article  PubMed  Google Scholar 

  • Portin P (2015) The development of genetics in the light of Thomas Kuhn’s theory of scientific revolutions. Recent Adv DNA Gene Seq 9:14–25

    CAS  PubMed  Google Scholar 

  • Raghavendra AS, Sane PV, Mohanty P (2003) Photosynthesis research in India: transition from yield physiology into molecular biology. Photosynth Res 76:435–445

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi A (2014) Reawakening anaesthesia research: anaesthesia – one of the greatest achievements of medicine – remains unexplained, but a slew of new studies may help to solve the mystery. EMBO Rep 15:1113–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs J (1875) Geschichte der Botanik vom 16. Jahrhundert bis 1860. Oldenbourg, Munich

    Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    Article  CAS  PubMed  Google Scholar 

  • Sahi VP, Wadekar HB, Ravi NS, Arumugam TU, Morita EH, Abe S (2012) A molecular insight into Darwin’s “plant brain hypothesis” through expression pattern study of the MKRN gene in plant embryo compared with mouse embryo. Plant Signal Behav 7:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šamaj J, Chaffey NJ, Tirlapur U, Jasik J, Volkmann D, Menzel D, Baluška F (2006) Actin and myosin VIII in plasmodesmata cell-cell channels. In: Baluška F, Volkmann D, Barlow PW (eds) Cell-cell channels. Landes Bioscience, Austin, pp 119–134

    Google Scholar 

  • Schliwa M (2002) The evolving complexity of cytoplasmic structure. Nat Rev Mol Cell Biol 3:291–295

    Article  CAS  PubMed  Google Scholar 

  • Schwann T (1847) Microscopical researches into the accordance in the structure and growth of animals and plants. The Sydenham Society, London

    Google Scholar 

  • Sekereš J, Žárský V (2018) 180 years of the cell: from Matthias Jakob Schleiden to the cell biology of the twenty-first century. In: Baluška F, Sahi VP (eds) Concepts in cell biology – history and evolution, Plant cell monographs. Springer, Heidelberg

    Google Scholar 

  • Shapiro JA (2011) Evolution – a new view from the 21st century. FT Press Science, New Jersey

    Google Scholar 

  • Torday JS (2017) From cholesterol to consciousness. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2017.08.009

  • Torday JS, Miller WB Jr (2016) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121:29–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Trewavas T (2016) Plant intelligence: an overview. Bioscience 66(7):542–551. https://doi.org/10.1093/biosci/biw048

    Article  Google Scholar 

  • Trewavas A, Baluška F (2011) The ubiquity of consciousness, cognition and intelligence in life. EMBO Rep 12:1221–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turin L, Skoulakis EMC, Horsfield AP (2014) Electron spin changes during general anesthesia in Drosophila. Proc Natl Acad Sci U S A 111:E3524–E3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bel A (2018) Plasmodesmata: a history of conceptual surprises. In: Baluška F, Sahi VP (eds) Concepts in cell biology – history and evolution, Plant cell monographs. Springer, Heidelberg

    Google Scholar 

  • Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    Article  CAS  PubMed  Google Scholar 

  • von Mohl H (1852) Principles of the anatomy and physiology of the vegetable cell (transl. by Henfrey A, F.R.S. and Van Voorst C). Ann Mag Nat Hist 2009 11:314–316

    Google Scholar 

  • Wollman AJ, Nudd R, Hedlund EG, Leake MC (2015) From Animaculum to single molecules: 300 years of the light microscope. Open Biol 5:150019

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokawa K, Kagenishi T, Pavlovič A, Gall S, Weiland M, Mancuso S, Baluška F (2017) Anesthetics block plant action potentials and stop plant movements. Ann Bot. https://doi.org/10.1093/aob/mcx155

  • Žárský V (2012) Jan Evangelista Purkyně/Purkinje (1787–1869) and the establishment of cellular physiology – Wrocław/Breslau as a central European cradle for a new science. Protoplasma 249:1173–1179

    Article  PubMed  Google Scholar 

  • Zuidervaart HJ, Anderson D (2016) Antony van Leeuwenhoek’s microscopes and other scientific instruments: new information from the Delft archives. Ann Sci 73:257–258

    Article  PubMed  Google Scholar 

  • Zwick RK, Schmidt BA (2014) When Anton van Leeuwenhoek looked through his early microscopes in the 1600s, he realized that the world was teeming with microbial organisms. Yale J Biol Med 87:1

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vaidurya Pratap Sahi or František Baluška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahi, V.P., Baluška, F. (2018). Plant Cell Biology: When, How, and Why?. In: Sahi, V., Baluška, F. (eds) Concepts in Cell Biology - History and Evolution. Plant Cell Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-69944-8_1

Download citation

Publish with us

Policies and ethics