Skip to main content

Characteristic Formulas Over Intermediate Logics

  • Chapter
  • First Online:
Larisa Maksimova on Implication, Interpolation, and Definability

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 15))

Abstract

We expand the notion of characteristic formula to infinite finitely presented subdirectly irreducible algebras. We prove that there is a continuum of varieties of Heyting algebras containing infinite finitely presented subdirectly irreducible algebras. Moreover, we prove that there is a continuum of intermediate logics that can be axiomatized by characteristic formulas of countable algebras, while they are not axiomatizable by standard Yankov (Jankov) formulas. We also give the examples of intermediate logics that are not axiomatizable by characteristic formulas of infinite algebras. Further, using the Gödel–McKinsey–Tarski translation, we extend these results to the varieties of interior algebras and normal extensions of S4. For this, using Maksimova’s Translation Lemma, we show that a finite presentation of a given Heyting algebra can be extended to its modal span. So, Maksimova’s Lemma allows us to extend the properties established for the finitely presented Heyting algebras to interior algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    There are two transcriptions of the last name: ‘Yankov’, that is used by Zentralblatt, and ‘Jankov’ used by Mathematical Reviews. The latter transcription is used much more often even though the former is more accurate and, as V.A. Yankov mentioned to the author, the transcription “Yankov” is preferred by him.

  2. 2.

    Independently the same observation was made in Butz (1998). In Blok and Pigozzi (1982) it was proven that in finitely approximated varieties with EDPC (and, as it is well known, the variety \(\mathscr {H}\) of all Heyting algebras is finitely approximated and enjoys EDPC) every s.i. finitely presented algebra is finite.

  3. 3.

    The Heyting algebras finitely presented over variety of all Heyting algebras are studied in Butz (1998).

  4. 4.

    The general fact that every finitely presented in a variety with EDPC s.i. algebra defines a splitting was observed in Blok and Pigozzi (1982).

  5. 5.

    For definition see McKenzie (1972).

  6. 6.

    The concatenations are often called ordered, linear or Troelstra sums. We are trying to avoid use of the term “sum” since it suggests some kind of commutativity which is not the case here.

  7. 7.

    An infinite splitting modal algebra in an extension of \(\mathbf {S4}\) was constructed in Kracht (1990), Sect. E. The Heyting algebra depicted at Fig. 5.2 is much simpler and it can be used for providing a simpler than in Kracht (1990) example of infinite splitting S4-algebra.

References

  • Bezhanishvili, G., & Bezhanishvili, N. (2009). An algebraic approach to canonical formulas: Intuitionistic case. Review of Symbolic Logic, 2(3), 517–549.

    Article  Google Scholar 

  • Bezhanishvili, G., Bezhanishvili, N., & de Jongh, D. (2008). The Kuznetsov-Gerčiu and Rieger-Nishimura logics. The boundaries of the finite model property, Logic and Logical Philosophy, 17(1–2), 73–110.

    Google Scholar 

  • Bezhanishvili, N. (2006). Lattices of intermediate and cylindric modal logics, PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam.

    Google Scholar 

  • Blok, W. (1976). Varieties of interior algebras, PhD thesis, University of Amsterdam.

    Google Scholar 

  • Blok, W. J., & Dwinger, P. (1975). Equational classes of closure algebras. I, Indagationes Mathematicae, 37, 189–198.

    Article  Google Scholar 

  • Blok, W. J., & Pigozzi, D. (1982). On the structure of varieties with equationally definable principal congruences. I, Algebra Universalis, 15(2), 195–227.

    Article  Google Scholar 

  • Butz, C. (1998). Finitely presented heyting algebras, BRICS Reports, University of Aarhus.

    Google Scholar 

  • Chagrov, A., & Zakharyaschev, M. (1997). Modal logic. Oxford Logic Guides (Vol. 35). New York: The Clarendon Press.

    Google Scholar 

  • Citkin, A. (1977). On admissible rules of intuitionistic propositional logic. Mathematics of the USSR-Sbornik 31, 279–288. (A. Tsitkin).

    Google Scholar 

  • Citkin, A. (1979) Pravila vyvoda dopustimye v superintuicionistskikh logikakh, PhD thesis, Uzhgorod State University, Ukraine (1979). [Inference rules addmissible in superintuitionistic logics].

    Google Scholar 

  • Citkin, A. (2012). Not every splitting Heyting or interior algebra is finitely presentable. Studia Logica, 100(1–2), 115–135.

    Article  Google Scholar 

  • de Jongh, D. (1968). Investigations on Intuitionistic Propositional Calculus, PhD thesis, University of Wisconsin.

    Google Scholar 

  • Fine, K. (1974). An ascending chain of \({\rm S}4\) logics. Theoria, 40(2), 110–116.

    Google Scholar 

  • Gerčiu, V. Y., & Kuznecov, A. V. (1970). Konechno aksiomatiziruemye superintuicionistskie logiki. Doklady Akademii Nauk SSSR, 195, 1263–1266. [The finitely axiomatizable superintuitionistic logics].

    Google Scholar 

  • Jónsson, B., & Tarski, A. (1952). Boolean algebras with operators. II, American Journal of Mathematics, 74, 127–162.

    Article  Google Scholar 

  • Kracht, M. (1990). An almost general splitting theorem for modal logic. Studia Logica, 49(4), 455–470.

    Article  Google Scholar 

  • Kracht, M. (1993). Splittings and the finite model property. Journal of Symbolic Logic, 58(1), 139–157.

    Article  Google Scholar 

  • Kracht, M. (1999). Tools and techniques in modal logic. Studies in Logic and the Foundations of Mathematics (Vol. 142). Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Kuznetsov, A. V. (1973). O konechno porozhdennykh psevdo-bulevykh algebrakh i finitno appoksimiruemykh mnogoobraziyakh. In Proceedings of the 12th USSR Algebraic Colloquium, Sverdlovsk, p. 281. [On finitely generated pseudo-Boolean algebras and finitely approximable varieties].

    Google Scholar 

  • Kuznetsov, A. V., & Gerčiu, V. Y. (1970). Superintuizionistskiye logiki i finitnaya approksimiruemost. Doklady Akademii Nauk SSSR, 195, 1029–1032. [The superintuitionistic logics and finite approximability].

    Google Scholar 

  • Maksimova, L. L. (1979). Interpolation properties of superintuitionistic logics. Studia Logica, 38(4), 419–428.

    Article  Google Scholar 

  • Maksimova, L. L., & Rybakov, V. V. (1974). Reshetka normalnykh modalnykh logik. Algebra i Logika, 13, 188–216. [The lattice of normal modal logics].

    Google Scholar 

  • Mal’cev, A. (1973). Algebraic systems. Berlin: Springer.

    Book  Google Scholar 

  • McKenzie, R. (1972). Equational bases and nonmodular lattice varieties. Transactiones of the American Mathematical Society, 174, 1–43.

    Article  Google Scholar 

  • Rasiowa, H., & Sikorski, R. (1970). The mathematics of metamathematics (3rd ed.). Warsaw: PWN.

    Google Scholar 

  • Rautenberg, W. (1979). Klassische und nichtklassische Aussagenlogik. Braunschweig: Friedr. Vieweg & Sohn.

    Book  Google Scholar 

  • Tomaszewski, E. (2003). On sufficiently rich sets of formulas, PhD thesis, Institute for Philosophy, Jagellonian University, Krakov.

    Google Scholar 

  • Umezawa, T. (1959). On intermediate propositional logics. Journal of Symbolic Logic, 24, 20–36.

    Article  Google Scholar 

  • Wolter, F. (1993). Lattices of modal logics, PhD thesis, Freien Universität Berlin.

    Google Scholar 

  • Wroński, A. (1974). On cardinality of matrices strongly adequate for the intuitionistic propositional logic. Bulletin of the Section of Logic, 3(1), 34–40.

    Google Scholar 

  • Yang, F. (2009). Intuitionistic subframe formulas, NNIL-Formulas and n-universal models, PhD thesis, Univerity of Amsterdam, Amsterdam, ILLC Dissertation Series MoL-2008-12.

    Google Scholar 

  • Yankov, V. A. (1963). O svyazi mezhdu vyvodimost’yu v intuicionistskom propozicionalnom ischislenii i konechnymi implikativnymi strukturami. Doklady Akademii Nauk SSSR, 151, 1293–1294. [Translation: “On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures”, Soviet Mathematics, Doklady 4, pp. 1203–1204.].

    Google Scholar 

  • Yankov, V. A. (1968). Postroenie posledovatelnosti silno nezavisimykh superintuizionistskikh propozicionalnykh ischislenij. Doklady Akademii Nauk SSSR, 181, 33–34. [Translation: “The construction of a sequence of strongly independent superintuitionistic propositional calculi.”, Soviet Mathematics, Doklady 9, pp. 806–807.].

    Google Scholar 

  • Yankov, V. A. (1969). Konjunktivno nerazreshimye formuly v propozicionalnom ischislenii. Izvestiya Akademii Nauk SSSR, Ser. Mat., 33, 18–38. [Translation: “Conjunctively irresolvable formulae in propositional calculi”, Mathematics of the USSR-Izvestiya  3, 17–35.].

    Google Scholar 

  • Zakharyaschev, M. (1992). Canonical formulas for \({\rm K}4\). I. Basic results. Journal of Symbolic Logic, 57(4), 1377–1402.

    Google Scholar 

  • Zakharyaschev, M. (1996). Canonical formulas for \({\rm K}4\). II. Cofinal subframe logics. Journal of Symbolic Logic, 61(2), 421–449.

    Google Scholar 

  • Zakharyaschev, M. (1997). Canonical formulas for \({\rm K}4\). III. The finite model property. Journal of Symbolic Logic, 62(3), 950–975.

    Google Scholar 

  • Zakharyashchev, M. V. (1983). O promezhutochnykh logikakh. Doklady Akademii Nauk SSSR, 269(1), 18–22. [On intermediate logics].

    Google Scholar 

  • Zakharyashchev, M. V. (1988). Sintaksis i semantika modalnykh logik, soderzhaschikh \({\rm S}4\). Algebra i Logika, 27(6), 659–689. [Syntax and semantics of modal logics that contain \({\rm S}4\)].

    Google Scholar 

  • Zakharyashchev, M. V. (1989). Sintaksis i semantika superintuicionistskikh logik. Algebra i Logika, 28(4), 486–487 (1989). [Syntax and semantics of superintuitionistic logics].

    Google Scholar 

Download references

Acknowledgements

Many thanks to A. Muravitsky, G. Bezhanishvili and F. Wolter for their fruitful discussions. The author is also indebted to L.L. Maksimova for pointing out that the Translation Lemma can be used in the proof of the Theorem 16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Citkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Citkin, A. (2018). Characteristic Formulas Over Intermediate Logics. In: Odintsov, S. (eds) Larisa Maksimova on Implication, Interpolation, and Definability. Outstanding Contributions to Logic, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-69917-2_5

Download citation

Publish with us

Policies and ethics