Skip to main content

Lattice NExtS4 from the Embedding Theorem Viewpoint

  • Chapter
  • First Online:
Larisa Maksimova on Implication, Interpolation, and Definability

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 15))

Abstract

We follow along the line of research begun with the pioneering work Maksimova and Rybakov (1974) which has initiated comparative analysis of the lattices of normal extensions of S4 and of intermediate logics. Grounding on the Gödel–McKinsey–Tarski embedding, for any S4-logic, we define the notion of \(\tau \)-decomposition and that of a modal component of the logic. Then, we investigate conditions, when a modal logic has its least modal component.

Dedicated to Larisa L. Maksimova, teacher and friend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    See also Gödel (1986), pp. 296–302, where the translation into English and commentary by A. Troelstra are provided.

  2. 2.

    Although the spirit of the Embedding Theorem is fundamental for our discussion, the Theorem will not appear here in its original form, but only as its generalization (10.5) due to Dummett and Lemmon (1959).

  3. 3.

    As is indicated in the introductory part of Maksimova and Rybakov (1974), Sects. 1, 2, and 4 were written by V. Rybakov and Sect. 3 by L. Maksimova.

  4. 4.

    We note that Grzegorczyk’s original axiomatization of \(\mathbf {Grz}\) was different from the one given above. The equivalence of the two axiomatizations was proved in Segerberg (1971), vol. 2.

  5. 5.

    In Muravitsky (2006), I mistakenly used the term dense instead of convex.

  6. 6.

    This proposition answers in the affirmative the question of Problem 9.2 in Muravitsky (2006).

  7. 7.

    There are examples, when \(Y\subset X\) but d(XY) is undefined. For instance, \(\mathbf {Dum}\subset M_{0}\), where \(\mathbf {Dum}=\mathbf {S4}+\Diamond \Box p\rightarrow (\Box (\Box (p\rightarrow \Box p)\rightarrow p)\rightarrow p)\), and \(d(M_{0},\mathbf {Dum})\) is undefined.

  8. 8.

    Actually, \(d^{*}(M)\) lies in the nth M-slice which is a proper subset of the nth S-slice.

References

  • Balbes, R., & Dwinger, P. (1974). Distributive lattices. Columbia: University of Missouri Press.

    Google Scholar 

  • Blok, W. (1976). Varieties of interior algebras. Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Burris, S., & Sankappanavar, H. (1981). A course in universal algebra (Vol. 78), Graduate texts in mathematics. New York: Springer.

    Google Scholar 

  • Chagrov, A., & Zakharyaschev, M. (1997). Modal logic (Vol. 35), Oxford logic guides. New York: The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Citkin, A. (2013). Jankov formula and ternary deductive term. Proceedings of the Sixth Conference on Topology, Algebra, and Category in Logic (TACL 2013) (pp. 48–51). Nashville: Vanderbilt University.

    Google Scholar 

  • Citkin, A. (2014). Characteristic formulas 50 years later (An algebraic account). arXiv:1407.583v1.

  • Dummett, M., & Lemmon, E. (1959). Modal logics between S4 and S5. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 5, 250–264.

    Article  Google Scholar 

  • Dunn, J., & Hardegree, G. (2001). Algebraic methods in philosophical logic (Vol. 41), Oxford logic guides. New York: The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Esakia, L. (1976). O modalnykh “naparnikakh” superintuicionistskikh logik, Abstracts of the 7th All-Union Symposium on Logic and Methodology of Science, Kiev (pp. 135–136). [On modal “counterparts” of superintuitionistic logics].

    Google Scholar 

  • Esakia, L. (1979). In Mikhailov, A. I. (Ed.), O mnogoobrazii algebr Grzegorczyka (pp. 257–287), Studies in non-classical logics and set theory. Moscow: Nauka. [Translation: On the variety of Grzegorczyk algebras. Selecta Mathematica Sovietica 3, pp. 343–366.].

    Google Scholar 

  • Fine, K. (1974). An ascending chain of S4 logics. Theoria, 40(2), 110–116.

    Article  Google Scholar 

  • Gabbay, D., & Maksimova, L. (2005). Interpolation and definability (Vol. 46), Oxford logic guides. Oxford: The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines Mathematischen Kolloquiums (Vol. 4, pp. 39–40). [Translation is available in Gödel (1986)].

    Google Scholar 

  • Gödel, K. (1986). In S. Feferman (Ed.), Collected works, Vol. 1, publications 1929–1936, With a preface by Solomon Feferman. New York: The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Grätzer, G. (1978). General lattice theory (1st ed.). Berlin: Akademie Verlag.

    Book  Google Scholar 

  • Grätzer, G. (1979). Universal algebra (2nd ed.). New York: Springer.

    Google Scholar 

  • Grzegorczyk, A. (1967). Some relational systems and the associated topological spaces. Fundamenta Mathematicae, 60, 223–231.

    Article  Google Scholar 

  • Hosoi, T. (1969). On intermediate logics. II. Journal of the Faculty of Science. University of Tokyo Sect. I, 16, 1–12.

    Google Scholar 

  • Hughes, G., & Cresswell, M. (1996). A new introduction to modal logic. London: Routledge.

    Book  Google Scholar 

  • Jankov, V. (1969). Konyunktino nerazlozhimye formuly v propozicional’nom ischislenii. Izvestia Akademii Nauk SSSR, Ser. Mat. 33, 18–38. [Transation: Conjunctively indecomposable formulas in propositional calculi, Mathematics of the USSR–Izvestiya 3, pp. 17–37.].

    Google Scholar 

  • Lemmon, E. (1965). Some results on finite axiomatizability in modal logic. Notre Dame Journal of Formal Logic, 6(4), 301–308.

    Article  Google Scholar 

  • Kleene, S. (1952). Introduction to metamathematics. New York: D. Van Nostrand Co., Inc.

    Google Scholar 

  • Maksimova, L. (1975). Modalnye logiki konechnykh sloev. Algebra i Logika 14(3), 304–319. [Transation: Modal logics of finite layers, Algebra and Logic 14, pp. 188–197.].

    Google Scholar 

  • Maksimova, L., & Rybakov, V. (1974). Reshetka normalnykh modalnykh logik. Algebra i Logika, 13(2), 188–216. [Transation: The lattice of normal modal logics, Algebra and Logic 13, pp. 105–122.].

    Google Scholar 

  • McKenzie, R. (1972). Equational bases and nonmodular lattice varieties. Transactions of the American Mathematical Society, 174, 1–43.

    Article  Google Scholar 

  • McKinsey, J., & Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141–191.

    Article  Google Scholar 

  • McKinsey, J., & Tarski, A. (1948). Some theorems about the sentential calculi of Lewis and Heyting. Journal of Symbolic Logic, 13(1), 1–15.

    Article  Google Scholar 

  • Muravitsky, A. (2006). The embedding theorem: its further development and consequences. Part 1. Notre Dame Journal of Formal Logic, 47(4), 525–540.

    Article  Google Scholar 

  • Rasiowa, H., & Sikorski, R. (1970). The Mathematics of Metamathematics (3rd ed., Vol. 41), Monografie Matematyczne. Warsaw: PWN.

    Google Scholar 

  • Rautenberg, W. (1979). Klassische und nichtclassische Aussagenlogik (Vol. 22), Logik und Grundlagen der Mathematik. Braunschweig: Friedr. Vieweg & Sohn.

    Google Scholar 

  • Rautenberg, W. (1980). Splitting lattices of logics. Archiv für. Mathematische Logik und Grundlagenforschung, 20(3–4), 155–159.

    Article  Google Scholar 

  • Scroggs, S. (1951). Extensions of the Lewis system S5. Journal of Symbolic Logic, 16, 112–120.

    Article  Google Scholar 

  • Segerberg, K. (1968). Decidability of S4.1. Theoria, 34, 7–20.

    Article  Google Scholar 

  • Segerberg, K. (1971). An Essay in Classical Modal Logic (Vol. 1-3), Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet. Uppsala: Filosofiska Studier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Muravitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muravitsky, A. (2018). Lattice NExtS4 from the Embedding Theorem Viewpoint. In: Odintsov, S. (eds) Larisa Maksimova on Implication, Interpolation, and Definability. Outstanding Contributions to Logic, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-69917-2_10

Download citation

Publish with us

Policies and ethics