Skip to main content

Complex Systems

  • Chapter
  • First Online:
Self-organizing Coalitions for Managing Complexity

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 29))

  • 1044 Accesses

Abstract

A complex system is an entity composed of interconnected parts, such that the collective behavior of those parts is more than the sum of the individual components. Those collective behaviors that appear as the interaction of the interconnected parts are usually called emergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solution: The total number of combinations is \(2.8462596809 \times 10^{35659}\).

  2. 2.

    Another frequent notation is the \(\Omega \) notation, that provides a lower bound in the function growth rate.

  3. 3.

    In dynamical systems, a bifurcation diagram shows the possible long-term values (equilibria/fixed points or periodic orbits) of a system as a function of a bifurcation parameter.

  4. 4.

    The function was \(f(x) = \sum _{n=1}^{\infty } b^n.cos(x \pi a^n)\), with \(a \in \mathbb {Z}^+\) and \(0< b < 1\).

References

  1. Barnsley, M.: Fractals Everywhere. Academic Press Professional, London (1993)

    MATH  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caldwell, B.J.: Popper and Hayek: who influenced whom? Karl Popper 2002 Centenary Congress (2002)

    Google Scholar 

  4. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  5. Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life, 1st edn. John Murray, London (1859)

    Google Scholar 

  6. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Google Scholar 

  7. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)

    Article  Google Scholar 

  8. Fogel, D.B.: Unearthing a fossil from the history of evolutionary computation. Fundam. Inform. 35(1–4), 1–16 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Godel, K.: Collected Works, vol. I. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  10. Godel, K.: Collected Works, vol. II. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  11. Haken, H.: Synergetics: Introduction and Advanced Topics. Springer, Berlin (2004)

    Google Scholar 

  12. Hayek, F.: The Results of Human Action but Not of Human Design in New Studies in Philosophy, Politics, Economics, pp. 96–105. University of Chicago Press, Chicago (1978)

    Google Scholar 

  13. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  15. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific, Singapore (2001)

    Google Scholar 

  16. Kolmogorov, A.N.: Three approaches to the quantitive definition of information. Probl. Inf. Transm. 1, 1–17 (1965)

    Google Scholar 

  17. Ladyman, J., Lambert, J., Wiesner, K.: What is a complex system? Eur. J. Philos. Sci. 3(1), 33–67 (2013)

    Article  MATH  Google Scholar 

  18. Lindenmayer, A.: Mathematical models for cellular interaction in development. J. Theor. Biol. 18, 280–315 (1968)

    Article  Google Scholar 

  19. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  20. Mandelbrot, B.B.: The Fractal Geometry of Nature. Henry Holt and Company, New York (1983)

    Google Scholar 

  21. Maynard-Smith, J.: The Theory of Evolution, 3rd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  22. May, R.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)

    Article  MATH  Google Scholar 

  23. Mendel, J.G.: Versuche ber Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brunn, Bd. IV fu r das Jahr. Abhandlungen, 3–47 (1865); For the English translation, see: Druery, C.T., Bateson, W.: Experiments in plant hybridization. J. R. Hortic. Soc. 26, 1–32 (1901)

    Google Scholar 

  24. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  25. Miller, J.H., Page, S.E.: Complex Adaptive Systems. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  26. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  27. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  28. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  29. Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Belknap Press, Cambridge (2006)

    MATH  Google Scholar 

  30. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (Ph.D. thesis), Printed in Fromman-Holzboog (1973)

    Google Scholar 

  31. Schwefel, H.: Numerische Optimierung von Computer-Modellen, Ph.D. thesis (1974); Reprinted by Birkhauser (1977)

    Google Scholar 

  32. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379423), 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  33. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. Ser. 2(42), 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  34. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  35. Zelinka, I., Davendra, D., Chadli, M., Senkerik, R., Dao, T.T., Skanderova, L.: Evolutionary Dynamics and Complex Networks. In: Zelinka, I., Snasel, V., Ajith, A. (eds.) Handbook of Optimization. Springer, Germany (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by grant No. GACR P103/15/06700S of the Grant Agency of Czech Republic, and the European Regional Development Fund (ERDF) together with the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zelinka .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zelinka, I., Burguillo, J.C. (2018). Complex Systems. In: Self-organizing Coalitions for Managing Complexity. Emergence, Complexity and Computation, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-69898-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69898-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69896-0

  • Online ISBN: 978-3-319-69898-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics