Incidence of Passive Measures in a Climate-Ready Architecture. Attending to Energy Demands and Overheating Risks

  • Aurora Monge-Barrio
  • Ana Sánchez-Ostiz Gutiérrez
Part of the Green Energy and Technology book series (GREEN)


Approaches used to evaluate passive measures related to residential buildings deal principally with their incidence in energy demand and overheating risks. The first approach considers that all buildings are equipped with air conditioning systems, and the second one that they are naturally conditioned. But in the Mediterranean Region, due to different climate severities, and considering socio-economically vulnerable population, these systems may not exist, cannot be used, or have a very limited use. On the other hand, evaluation of indoor thermal environments should take into account that population living in residential buildings are intergenerational and varied, and should all be protected from future changing conditions through a Climate-Ready Architecture. Case Studies of two typical residential building typologies located in ten different locations in Southern Europe have been studied from both approaches, allowing an assessment of this challenge.


Shading devices Ventilation Thermal mass Patterns of use Resilience Vulnerable population 



We would like to thank María Dolores Juri, student in the Master’s Degree in Environmental Management and Building Design, MDGAE in University of Navarra (Spain), who carry out the Master’s Thesis titled ‘Resiliencia al cambio climático en viviendas del sur de Europa de climas mediterráneos’. Also to Cristina Guell, for her assistance in the elaboration of overheating graphs.


  1. ASHRAE55-2013. (2013). Thermal Environmental Conditions for Human Occupancy.Google Scholar
  2. Brotas, L., & Nicol, J. F. (2016). The problem of overheating in European dwellings. Windsor, 2016(April), 7–10.Google Scholar
  3. CTE-HE. (2013). Documento Básico CTE-HE Ahorro de energía. Septiembre. Retrieved from
  4. EEA. (2016). Climate change, impacts and vulnerability in Europe 2016 - Key findings. EEA Report. Scholar
  5. Huang, J. (2011). ASHRAE Research Project 1477-RP Development of 3,012 typical year weather files for international locations. Final Report.Google Scholar
  6. Jentsch, M. F., James, P. A. B., Bourikas, L., & Bahaj, A. S. (2013). Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 55, 514–524. Scholar
  7. Psomas, T., Heiselberg, P., Duer, K., & Bjorn, E. (2016). Overheating risk barriers to energy renovations of single family houses: Multicriteria analysis and assessment. Energy and Buildings, 117, 138–148. Scholar
  8. Rodriguez-Vidal, I. (2016). Evaluación del estándar de construcción Passivhaus y su aplicación en el ámbito climático de la Comunidad Autónoma Vasca y la Comunidad Foral Navarra. El caso de la vivienda colectiva de protección oficial. Retrieved from
  9. Saman, W., Boland, J., Pullen, S., Dear, R. De, Soebarto, V., Miller, W., … Chileshe, N. (2013). A framework for adaptation of Australian households to heat waves. Retrieved from
  10. UNE-EN 15251. (2008). Parámetros del ambiente interior a considerar para el diseño y la evaluación de la eficiencia energética de edificios incluyendo la calidad del aire interior, condiciones térmicas, iluminación y ruido.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Aurora Monge-Barrio
    • 1
  • Ana Sánchez-Ostiz Gutiérrez
    • 2
  1. 1.School of ArchitectureUniversity of NavarraPamplonaSpain
  2. 2.School of ArchitectureUniversity of NavarraPamplonaSpain

Personalised recommendations