Advertisement

The Scope of Retrofitting on an Urban Scale. Use of Geographic Information Systems, GIS, for Diagnosis of Energy Efficient Interventions at an Urban Level

  • Aurora Monge-Barrio
  • Ana Sánchez-Ostiz Gutiérrez
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The action is taken to reach the European objectives for mitigation and adaption to the climate change demand intervention at all urban levels, that is, from the residential building to the neighbourhood and from the neighbourhood to the city. However, this action must first be based on the diagnosis of the current state of the residential stock in relationship with two of the most significant environmental aspects which are energy consumption and CO2 emissions. Second, action must also be focused on the knowledge of the efficient retrofitting measures of the thermal envelope in order to measure the reach or repercussions that retrofitting may have on residential buildings constructed as a whole. In addition, there must be awareness of the existing social reality in certain areas, in order to prioritize action plans and strategies in a viable and realistic way. This chapter shows an example carried out in the city of Pamplona, in northern Spain. In this example, typologies of social-type dwellings in the different suburban neighbourhoods of the city have been identified, a diagnosis of the energy efficiency of these buildings and their energy rating has been obtained, and two retrofitting scenarios have been established in order to assess the repercussions of the measures taken. The socio-economic aspects of the population which affect the potential for retrofitting have also been studied. Likewise, the potential areas of greater energy and social vulnerability which demand special assistance and interventions in order to avoid situations of energy poverty have been identified. The complete information has been gathered in a GIS model.

Keywords

Retrofitting urban scale Geographic information systems Energy vulnerability Social vulnerability Energy retrofitting policies 

Notes

Acknowledgements

We would like to thank the Fundación Caja Navarra for founding the Project ‘Energy-Social Model of Houses Built between 1940 and 1980 in Rochapea and Chantrea Neighbourhoods, Pamplona’. We wish to give special thanks to Juan José Pons-Izquierdo, Ana Castillejo and Jorge San Miguel for their collaboration in the GIS programme and collecting data. Finally, we appreciate the assistance of Cristina Güell in this chapter.

References

  1. Alhamwi, A., Medjroubi, W., Vogt, T., & Agert, C. (2017). GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas. Applied Energy, 191, 1–9.  https://doi.org/10.1016/j.apenergy.2017.01.048.CrossRefGoogle Scholar
  2. Braulio-Gonzalo, M., Bovea, M. D., & Ruá, M. J. (2015). Sustainability on the urban scale: Proposal of a structure of indicators for the Spanish context. Environmental Impact Assessment Review, 53, 16–30.  https://doi.org/10.1016/j.eiar.2015.03.002.CrossRefGoogle Scholar
  3. Caryl-Sue. (2017). GIS (geographic information system)—National Geographic Society. Retrieved November 28, 2017, from https://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/.
  4. Commission of the European Communities. (2008). Package of implementation measures for the EU’s objective on climate change and renewable energy for 2020, 27. http://doi.org/10.1007/s13398-014-0173-7.2.
  5. CTE-HE. (2013). Documento Básico CTE-HE Ahorro de energía. Septiembre. Google Scholar
  6. Cuchí, A. (2013). Mesa Redonda sobre Rehabilitación y Empleo, organizada por PU Europe e IPUR - YouTube. Retrieved October 10, 2017, from https://www.youtube.com/watch?list=UUVJI0TzX1BlJsL7hduc_7RQ&time_continue=3&v=uWIf1Fk9-j8.
  7. Cuchí, A., & Sweatman, P. (2014). Informe GTR 2014. Estrategia para la rehabilitación. Claves para transformar el sector de la edificación en España, 84.Google Scholar
  8. Entranze. (n.d.). ENTRANZE: Welcome to ENTRANZE project page. Retrieved October 10, 2017, from http://www.entranze.eu/.
  9. EPDB. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union, 13–35. https://doi.org/doi:10.3000/17252555.L_2010.153.eng.
  10. European Commission. (2013). Green paper—A 2030 framework for climate and energy policies. COM(2013) 169 Final, 1–16. Retrieved from http://ec.europa.eu/clima/policies/strategies/2030/documentation_en.htm.
  11. European Commission. (2014). Comunicación de la comisión al Parlamento Europeo, al consejo, al Comité Económico y social europeo y al Comité de las regiones, pp. 1–21.Google Scholar
  12. European Commission. (2016). Acuerdos internacionales sobre actuación en materia climática. Retrieved October 10, 2017, from http://www.consilium.europa.eu/es/policies/climate-change/international-agreements-climate-action/.
  13. Fabbri, K., Zuppiroli, M., & Ambrogio, K. (2012). Heritage buildings and energy performance: Mapping with GIS tools. Energy and Buildings, 48, 137–145.  https://doi.org/10.1016/j.enbuild.2012.01.018.CrossRefGoogle Scholar
  14. Gobierno de Navarra. (n.d.). SITNA: Sistema de Información Territorial de Navarra. Retrieved October 10, 2017, from http://sitna.navarra.es/geoportal/?lang=.
  15. Gobierno Vasco, D.F. de G. (2013). Pobreza energética.Google Scholar
  16. Gupta, R., & Gregg, M. (2013). Preventing the overheating of English suburban homes in a warming climate. Building Research & Information, 41(3), 281–300.  https://doi.org/10.1080/09613218.2013.772043.CrossRefGoogle Scholar
  17. INE. (2011). Demografía y población. Cifras de población y censos demográficos. Censos de Población y Viviendas 2011. Retrieved October 10, 2017, from http://www.ine.es/censos2011_datos/cen11_datos_inicio.htm.
  18. Inter-American Development Bank. (2010). Inter-American Development Bank, (March). Retrieved from http://www.iadb.org/en/inter-american-development-bank,2837.html.
  19. Johansson, T., Vesterlund, M., Olofsson, T., & Dahl, J. (2016). Energy performance certificates and 3-dimensional city models as a means to reach national targets—A case study of the city of Kiruna. Energy Conversion and Management, 116, 42–57.  https://doi.org/10.1016/j.enconman.2016.02.057.CrossRefGoogle Scholar
  20. Mavrogianni, A., Davies, M., Chalabi, Z., Wilkinson, P., Kolokotroni, M., & Milner, J. (2009). Space heating demand and heatwave vulnerability: London domestic stock. Building Research & Information, 37(5–6), 583–597.  https://doi.org/10.1080/09613210903162597.CrossRefGoogle Scholar
  21. Mentis, D., Andersson, M., Howells, M., Rogner, H., Siyal, S., Broad, O., … Bazilian, M. (2016). The benefits of geospatial planning in energy access—A case study on Ethiopia. Applied Geography, 72, 1–13. http://doi.org/10.1016/j.apgeog.2016.04.009.
  22. Min, J., Hausfather, Z., & Lin, Q. F. (2010). A high-resolution statistical model of residential energy end use characteristics for the United States. Journal of Industrial Ecology, 14(5), 791–807.  https://doi.org/10.1111/j.1530-9290.2010.00279.x.CrossRefGoogle Scholar
  23. Nouvel, R., Mastrucci, A., Leopold, U., Baume, O., Coors, V., & Eicker, U. (2015). Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support. Energy and Buildings, 107, 204–212.  https://doi.org/10.1016/j.enbuild.2015.08.021.CrossRefGoogle Scholar
  24. Rubio del Val, J. (2011). Rehabilitación Urbana en España (1989–2010). Barreras actuales y sugerencias para su eliminación. Informes de La Construcción, 63(Extra), 5–20. http://doi.org/10.3989/ic.11.060.
  25. Santamouris, M., Kapsis, K., Korres, D., Livada, I., Pavlou, C., & Assimakopoulos, M. N. (2007). On the relation between the energy and social characteristics of the residential sector. Energy and Buildings, 39(8), 893–905.  https://doi.org/10.1016/j.enbuild.2006.11.001.CrossRefGoogle Scholar
  26. Soriano, M. (n.d.). Observatorio de la Sostenibilidad - X UN FUTURO + SOSTENIBLE. Retrieved October 10, 2017, from http://www.observatoriosostenibilidad.com/.
  27. Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835.  https://doi.org/10.1016/j.rser.2008.09.033.CrossRefGoogle Scholar
  28. Theodoridou, I., Karteris, M., Mallinis, G., Papadopoulos, A. M., & Hegger, M. (2012). Assessment of retrofitting measures and solar systems’ potential in urban areas using geographical information systems: application to a Mediterranean city. Renewable and Sustainable Energy Reviews, 16(8), 6239–6261.  https://doi.org/10.1016/j.rser.2012.03.075.CrossRefGoogle Scholar
  29. Tirado Herrero, S., Jiménez Meneses, L., López Fernandez, J. L., & Martín García, J. (2014). Pobreza Energética en España. Informe de tendencias. Asociacion de Ciencias Ambiantales, 1, 171.Google Scholar
  30. UNFCCC. (2015). Paris Climate Change Conference-November 2015, COP 21. Adoption of the Paris Agreement. Proposal by the President., 21932(December), 32. http://doi.org/FCCC/CP/2015/L.9/Rev.1.
  31. Veres, E. J. (1999). Ordenación de secciones censales según un indicador de pobreza. Estadística Española, 41(144), 169–201.  https://doi.org/10.1016/j.proenv.2010.10.187.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Aurora Monge-Barrio
    • 1
  • Ana Sánchez-Ostiz Gutiérrez
    • 2
  1. 1.School of ArchitectureUniversity of NavarraPamplonaSpain
  2. 2.School of ArchitectureUniversity of NavarraPamplonaSpain

Personalised recommendations