Retrofitting Focus on Vulnerable Residential Buildings in Winter

  • Aurora Monge-Barrio
  • Ana Sánchez-Ostiz Gutiérrez
Part of the Green Energy and Technology book series (GREEN)


The fight against climate change demands improvements in existing constructions to adopt them to the objective of a reduction of energy consumption and of CO2 emissions. At present, in Spain and in other European countries, we have a large quantity of inefficient residential building stock, for example the dwellings which were constructed before the approval of the first thermal condition regulations for buildings. Hitherto, the strategy has been to prioritize the reduction of energy demands during the winter, as the highest percentage of energy consumption in the European Union is used for heating. By means of monitoring and simulation, we have detected the key factors which affect the energy demands of these buildings, and found the appropriate indoor temperatures for well-being and health. We present cases of monitored dwellings in which different situations may be compared, both those of construction factors and of use and socioeconomic conditions. These show the very different temperatures reached in buildings, where the thermal envelope has and has not been retrofitted. In addition, we show retrofitting measures for the thermal envelope which allow for a reduction in the energy demands for heating and an increase in user comfort, particularly that of the most vulnerable population groups. On this point, the user patterns for heating are highlighted. Lastly, the reduction in demands which would be produced in different European cities with the application of these retrofitting measures is compared to the present-day scenario and in the 2050 future in accordance with climate change predictions.


Energy demand Energy retrofitting Thermal envelope Monitoring Indoor temperatures Airtightness Patterns of use Simulation European case studies Climate change 



We would like to thank the Spanish Ministry of Economy and Competitiveness for financing the project ‘Performance Buildings Envelope Rehabilitation Protocol (prestaRener) through BIA 2012-38666, which is the basis of this chapter. We wish to thank the participants from Grupo SAVIArquitectura in this project: Purificación González, Silvia Domingo, Germán Ramos, Juan Echeverría, and specially Ana Castillejo and Jorge San Miguel, likewise to Brian Meacham, from Worcester Polytechnic Institute (USA). Also thanks to Isabel Izcue and Ana Bretaña from NASUVINSA, as well as Alberto Calvo from Department of Building Retrofitting of the City Hall of Pamplona. Finally, special thanks to Cristina Güell for her assistance in this chapter.


  1. Comisión Europea. (2010). Directiva 2010/31/UE relativa a la eficiencia energética de los edificios. Boletin Oficial, L135, pp. 13–35.Google Scholar
  2. CTE-HE. (2013). Documento Básico CTE-HE Ahorro de energía 2013.Google Scholar
  3. Dascalaki, E. G., Droutsa, K. G., Balaras, C. A., & Kontoyiannidis, S. (2011). Building typologies as a tool for assessing the energy performance of residential buildings—A case study for the Hellenic building stock. Energy and Buildings, 43(12), 3400–3409. Scholar
  4. Deponds, D. (2010). The Urban and social challenges concerning an operation of urban renewal in the parisian periphery. The Example of la Croix-petit in Cergy, 13, 83–102.Google Scholar
  5. Domingo-Irigoyen, S., Sánchez-Ostiz, A., & Miguel-Bellod, J. S. (2015). Cost-effective renovation of a multi-residential building in Spain through the application of the IEA Annex 56 Methodology. Energy Procedia, 78, 2385–2390. Scholar
  6. Gutiérrez Palomero, A. (2010). La iniciativa comunitaria urban y la construcción inconclusa de una política urbana para la unión europea. Papeles de Geografía, 1(25003), 159–167.Google Scholar
  7. Huang, J. (2011). ASHRAE Research Project 1477-RP Development of 3,012 typical year weather files for international locations. Final Report.Google Scholar
  8. IEA Annex 56. (2016). Annex 56. Retrieved October 10, 2017, from
  9. International Organization for Standardization. (2000). ISO 6781: 1983 Thermal performance of buildings. qualitative detection of thermal irregularities in building envelopes. Infrared method(ISO 6781:1983, modified) (2000).Google Scholar
  10. International Organization for Standardization. (2002). ISO 9972: 2015 Thermal performance of buildings—Determination of air permeability of buildings—Fan pressurization method (ISO 9972:1996, modified) (2002).Google Scholar
  11. International Organization for Standardization. (2014). ISO 9869-1: 2014 Thermal insulation—Building elements. In-situ measurement of thermal resistance and thermal transmittance—Part 1: Heat flow meter method.Google Scholar
  12. Jentsch, M. F., James, P. A. B., Bourikas, L., & Bahaj, A. S. (2013). Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 55, 514–524. Scholar
  13. López de Lucio, R. (2008). Ordenar el territorio, proyectar la ciudad, rehabilitar los tejidos existentes. La relevancia del planeamiento a través de los premios nacionales de urbanismo.Google Scholar
  14. Ma, Z., Cooper, P., Daly, D., & Ledo, L. (2012). Existing building retrofits: Methodology and state-of-the-art. Energy and Buildings, 55, 889–902. Scholar
  15. Meacham, B., Poole, B., Echeverria, J., & Cheng, R. (2012). Fire safety challenges of green buildings. Heidelberg: Springer.Google Scholar
  16. Ministero de Fomento. (2014). Estrategia a largo plazo para la rehabilitación energética en el sector de la edificación en España.Google Scholar
  17. Morandi, C., Pessina, G., & Scavuzzo, L. (2010). Strumenti innovativi per la riqualificazione dei quartieri residenziali in Italia: tre casi esemplari. Ciudades: Revista Del Instituto Universitario de Urbanística de La Universidad de Valladolid, 13, 103–122. Retrieved from,
  18. Naciones Unidas. (1998). Protocolo de kyoto de la convención marco de las naciones unidas sobre el cambio climático. Protocolo de Kyoto, 61702, 20. Retrieved from
  19. Prat Navarro, F. X., & Wadel, G. (2010). La experiencia de rehabilitación de viviendas en España bajo parámetros ambientales. Un estado del arte. SB10Mad. Edificación Sostenible, Revitalización Y Rehabilitación de Barrios, pp. 1–12.Google Scholar
  20. Rubio del Val, J. (2011). Rehabilitación Urbana en España (1989–2010). Barreras actuales y sugerencias para su eliminación. Informes de La Construcción, 63(Extra), 5–20. doi:
  21. Rubio del Val, J., & Molina Costa, P. (2010). Estrategias, Retos y Oportunidades en la Rehabilitación de los Polígonos de Vivienda Construidos en España entre 1940 Y 1980. Ciudades, 13, 15–37.Google Scholar
  22. Sánchez-Ostiz, A., Meacham, B. J., Domingo-irigoyen, S., Echeverria, J. B., & González, P. (2014). Implications of thermal envelope retrofitting in other building requirements performance. In 40th IAHS World Congress on Housing, pp. 1–9.Google Scholar
  23. TABULA Episcope. (n.d.). IEE Project TABULA. Retrieved October 11, 2017, from
  24. UNE-EN 12831:2003. (2003). Heating systems in buildings. Method for calculation of the design heat loaf.Google Scholar
  25. UNE-EN 13829. (2002). Thermal performance of buildings. Determination of air permeability of buildings. Fan pressurization method (ISO 9972:1996, modified).Google Scholar
  26. UNFCCC. (2015). Paris Climate Change Conference-November 2015, COP 21. Adoption of the Paris Agreement. Proposal by the President, 21932(December), 32. doi:
  27. Vandentorren, S., Bretin, P., Zeghnoun, A., Mandereau-Bruno, L., Croisier, A., Cochet, C., et al. (2006). August 2003 heat wave in France: Risk factors for death of elderly people living at home. European Journal of Public Health, 16(6), 583–591. doi:

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Aurora Monge-Barrio
    • 1
  • Ana Sánchez-Ostiz Gutiérrez
    • 2
  1. 1.School of ArchitectureUniversity of NavarraPamplonaSpain
  2. 2.School of ArchitectureUniversity of NavarraPamplonaSpain

Personalised recommendations