Skip to main content

Oscillatory Flow in a Mesh-Type Regenerator

  • Chapter
  • First Online:
Modeling Transport Phenomena in Porous Media with Applications

Part of the book series: Mechanical Engineering Series ((MES))

  • 1787 Accesses

Abstract

A stack of meshes assembled to form a regenerator of a Stirling cycle has been analyzed for determining flow distribution and heat transfer. A non-Darcy, thermal nonequilibrium model is driven by pulsatile flow with hot and cold fluid alternately going past the mesh in opposite directions. The characteristic frequency of pulsation is determined with reference to the time constant of the gas-wire system. The flow is shown to reach dynamic steady state rapidly, when compared to the thermal field. With this result, the flow field is computed by a harmonic analysis technique. The energy equations for the fluid and the solid phases are numerically integrated in time. Calculations continue for a total of 104 cycles. Dense meshes reported in the literature are evaluated against coarse meshes. Results have been presented for two Reynolds numbers, 100 and 10,000, the latter being closer to a practically attainable value in applications. Velocity profiles in dense meshes are seen to be flatter in comparison with coarse meshes. In addition, thermal nonequilibrium effects are quite significant in coarse meshes, pointing to a need for preferring dense meshes in cryocooler applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( A_{IF} \) :

Specific area of the porous insert, \( 4(1 - \varepsilon )/d_{w} \)(m−1)

\( A_{F} \) :

Non-dimensional value of \( A_{IF} \) namely \( A_{IF} R \)

\( Bi \) :

Biot number for heat loss to the ambient \( hR/k_{s} \)

\( d_{h} \) :

Hydraulic diameter of the porous insert \( \varepsilon \,d_{w} /(1 - \varepsilon ) \) (m)

\( d_{w} \) :

Mesh wire diameter (m)

\( Da \) :

Darcy number, \( K/R^{2} \)

\( E \) :

Regenerator effectiveness , Eq. (6.44)

\( F_{\varepsilon } \) :

Ergun coefficient

\( f_{j} \) :

jth harmonic of friction factor equal to \( \left| {P_{j} } \right| \)

\( f_{eq} \) :

Total equivalent friction factor , Eq. (6.39)

\( h \) :

Heat transfer coefficient between the regenerator tube and the ambient (W/m2-K)

\( k \) :

Thermal conductivity (W/m-K)

\( K \) :

Permeability (m2)

\( Nu \) :

Fluid-to-solid Nusselt number at the scale of the mesh wire

\( p \) :

Non-dimensional fluid pressure scaled with \( \rho W^{2} \)

\( P_{j} \) :

Pressure gradient for the jth harmonic scaled by \( \rho W^{2} /R \)

\( \Pr \) :

Prandtl number

\( r \) :

Non-dimensional radial coordinate scaled with R

\( R \) :

Tube radius (m)

\( t \) :

Non-dimensional time scaled with \( R/W \)

\( T \) :

Temperature (K)

\( w \) :

Non-dimensional axial velocity scaled with W

\( W \) :

Velocity amplitude of pulsing flow (m/s)

\( \overline{w} \) :

Cross-sectional mean velocity scaled with W

\( z \) :

Non-dimensional axial distance scaled with R

\( \alpha_{f} \) :

Thermal diffusivity of the fluid (m2/s)

\( \beta \) :

Fluid-to-solid specific heat ratio

\( \Gamma \) :

Fluid-to-solid effective thermal conductivity ratio

\( \Delta T \) :

Reference temperature difference \( T_{H} - T_{L}\,\, \text{(K)}\)

\( \lambda \) :

Fluid-to-solid thermal conductivity ratio

ε :

Porosity

\( \varphi_{j} \) :

Velocity amplitude of jth harmonic scaled by W

\( \mu \) :

Dynamic viscosity of the working fluid (Pa-s)

\( \rho \) :

Fluid density (kg/m3)

\( \theta \) :

Non-dimensional temperature \( (T - T_{L} )/(T_{H} - T_{L} ) \)

\( \tau_{c} \) :

Thermal time constant of the porous insert (s)

\( \omega \) :

Pulsing frequency of the flow scaled with \( \omega_{c} \)

\( \omega_{c} \) :

Characteristic frequency \( \pi /\tau_{c} \)(s−1)

\( f \) :

Fluid phase

\( H \) :

Hot half of the oscillation cycle

\( j \) :

jth harmonic

L :

Cold half of the oscillation cycle

\( R \) :

Quantity scaled with R as the length scale

\( w \) :

Quantity scaled with \( d_{w} \) as the length scale

\( s \) :

Solid phase

References

  1. G. Walker, Cryocoolers Part I and II International Cryogenics Monographs Series (Plenum Press, New York, 1983)

    Google Scholar 

  2. B. Cullen, J. McGovern, Development of a theoretical decoupled Stirling cycle engine. Simul. Model. Pract. Theory 19, 1227–1234 (2011)

    Article  Google Scholar 

  3. F. Formosa, G. Despesse, Analytical model for Stirling cycle machine design. Energy Convers. Manag. 51, 1855–1863 (2010)

    Article  Google Scholar 

  4. P.C.T. de Boer, Optimal regenerator performance in Stirling engines. Int. J. Energy Res. 33, 813–832 (2009)

    Article  Google Scholar 

  5. A.J. Organ, The Air Engine, CRC Press, Boca Raton (2007); also see Stirling and Pulse-tube Cryocoolers (Professional Engineering Publication Ltd, UK, 2005)

    Google Scholar 

  6. J.G. Brisson, G.W. Swift, Measurements and modeling of recuperators for superfluid Stirling refrigerator. Cryogenics 34, 971–982 (1994)

    Article  Google Scholar 

  7. L. Bauwens, Stirling cryocooler model with stratified cylinders and quasisteady heat exchangers. J Thermophys. Heat Trans. 9, 129–135 (1995)

    Article  Google Scholar 

  8. K. Muralidhar, K. Suzuki, Analysis of flow and heat transfer in a regenerator mesh using a non-Darcy thermally non-equilibrium model. Int. J. Heat Mass Trans. 44, 2493–2504 (2001)

    Article  MATH  Google Scholar 

  9. J. Tian, T.J. Lu, H.P. Hodson, D.T. Queheillalt, H.N.G. Wadley, Cross flow heat exchange of textile cellular metal core sandwich panels. Int. J. Heat Mass Trans. 50, 2521–2536 (2007)

    Article  MATH  Google Scholar 

  10. R. Dyga, M. Płaczek, Efficiency of heat transfer in heat exchangers with wire mesh packing. Int. J. Heat Mass Trans. 53, 5499–5508 (2010)

    Article  Google Scholar 

  11. J. Xu, J. Tian, T.J. Lu, H.P., Hodson, On the thermal performance of wire-screen meshes as heat exchanger material. Int. J. Heat Mass Trans. 50, 1141–1115 (2007)

    Google Scholar 

  12. Chen Li, G.P. Peterson, The effective thermal conductivity of wire screen. Int. J. Heat Mass Trans. 49, 4095–4105 (2006)

    Google Scholar 

  13. R.E. Hayes, A. Afacan, B. Boulanger, An equation of motion for an incompressible Newtonian fluid in a packed bed. Trans. Porous Media 18, 185–198 (1995)

    Article  Google Scholar 

  14. T. Masuoka, Y. Takatsu, Turbulence model for flow through porous media. Int. J. Heat Mass Trans. 39, 2803–2809 (1996)

    Article  MATH  Google Scholar 

  15. K. Vafai, S.J. Kim, Forced convection in a channel filled with a porous medium: An exact solution. Trans. ASME J. Heat Trans. 111, 1103–1106 (1989)

    Article  Google Scholar 

  16. G. Lauriat, V. Prasad, Non-Darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Trans. 32, 2135–2148 (1989)

    Article  Google Scholar 

  17. K. Vafai, S.J. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation. IJHFF 16, 11–15 (1995)

    Google Scholar 

  18. D.A. Nield, S.J. Kim, K. Vafai, Closure statements on the Brinkman-Forchheimer-extended Darcy model. IJHFF 17, 34–35 (1996)

    Google Scholar 

  19. J.L. Lage, On the theoretical prediction of transient heat transfer within a rectangular fluid-saturated porous medium enclosure. ASME J. Heat Trans. 115, 1069–1071 (1993)

    Article  Google Scholar 

  20. B.V. Antohe, J.L. Lage, Amplitude effect on convection induced by time-periodic horizontal heating. Int. J. Heat Mass Trans. 39, 1121–1133 (1996)

    Article  Google Scholar 

  21. J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media (Kluwer Academic Publishers, London, 1990)

    Book  MATH  Google Scholar 

  22. M. Kaviany, Principles of Heat Transfer in Porous Media, Mechanical Engineering Series (Springer, New York, 1991)

    Book  Google Scholar 

  23. M. Sozen, T.M. Kuzay, Enhanced heat transfer in round tubes with porous inserts. Int. J. Heat Fluid Flow 17, 124–129 (1996)

    Article  Google Scholar 

  24. S.Y. Kim, B.H. Kang, J.M. Hyun, Heat transfer from pulsating flow in a channel filled with porous media. Int. J. Heat Mass Trans. 37, 2025–2033 (1994)

    Article  MATH  Google Scholar 

  25. A.V. Kuznetsov, An investigation of a wave of temperature difference between solid and fluid phases in a porous packed bed. Int. J. Heat Mass Trans. 37, 3030–3033 (1994)

    Article  MATH  Google Scholar 

  26. A.V. Kuznetsov, Comparison of the waves of temperature difference between the solid and fluid phases in a porous slab and a semi-infinite porous body. Int Comm. Heat Mass Trans. 22, 499–506 (1995)

    Article  Google Scholar 

  27. A.V. Kuznetsov, A perturbation solution for a nonthermal equilibrium fluid flow through three dimensional sensible storage packed bed. Trans. ASME J. Heat Trans. 118, 508–510 (1996)

    Article  Google Scholar 

  28. A.V. Kuznetsov, K. Vafai, Analytical comparison and criteria for heat and mass transfer models in metal hydride packed beds. Int. J. Heat Mass Trans. 38, 2873–2884 (1995)

    Article  Google Scholar 

  29. M. Sozen, K. Vafai, Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed. Int. J. Heat Mass Trans. 33, 1247–1261 (1990)

    Article  Google Scholar 

  30. K. Vafai, M. Sozen, Analysis of energy and momentum transport for fluid flow through a porous bed. Trans. ASME J. Heat Trans. 112, 690–699 (1990)

    Article  Google Scholar 

  31. A. Amiri, K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Trans. 37, 939–954 (1994)

    Article  Google Scholar 

  32. E.A. Foumeny, P.J. Heggs, Thermal performance of cyclic regenerators under varying inlet temperature conditions. Exp. Heat Trans. 8, 1–15 (1995)

    Article  Google Scholar 

  33. S. Isshiki, A. Sakano, I. Ushiyama, N. Isshiki, Studies on flow resistance and heat transfer of regenerator wire meshes of Stirling engines in oscillatory flow. Trans. JSME B 62–604, 4254–4261 (1996)

    Article  Google Scholar 

  34. S.Y. Kim, B.H. Kang, J.M. Hyun, Heat transfer from pulsating flow in a channel filled with porous media. Int. J. Heat Mass Trans. 37, 2025–2033 (1994)

    Article  MATH  Google Scholar 

  35. F. Kuwahara, A. Nakayama, H. Koyama, A numerical study of thermal dispersion in porous media. ASME J. Heat Trans. 118, 756–761 (1996)

    Article  Google Scholar 

  36. F. Kuwahara, A. Nakayama, H. Koyama, A study of thermal dispersion in fluid flow and heat transfer in porous media. Trans JSME B 62–600, 3118–2124 (1996)

    Google Scholar 

  37. F. Kuwahara, A. Nakayama, H. Koyama, Direct numerical simulation of fluid flow in an anisotropic porous medium. Trans. JSME B 62–603, 3920–3925 (1996)

    Article  Google Scholar 

  38. P.-H. Chen, Z.-C. Chang, B.-J. Huang, Effect of oversize in wire screen matrix to the matrix holding tube on regenerator thermal performance. Cryogenics 36, 365–372 (1996)

    Article  Google Scholar 

  39. L.M. Jiji, Heat Convection, 2nd edn. (Springer-Verlag, Berlin, 2010)

    Google Scholar 

  40. A. Bejan, Convection Heat Transfer, 4th edn. (Wiley, New Jersey, 2013)

    Book  MATH  Google Scholar 

  41. L.H. Thomas, Elliptic problems in linear difference equations over a network. Watson Sci. Comput. Lab. Rep. Columbia University, New York (1949)

    Google Scholar 

  42. B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engg. 19, 59–98 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay K. Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M.K., Mukherjee, P.P., Muralidhar, K. (2018). Oscillatory Flow in a Mesh-Type Regenerator. In: Modeling Transport Phenomena in Porous Media with Applications. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-69866-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69866-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69864-9

  • Online ISBN: 978-3-319-69866-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics