Skip to main content

Mesoscale Interactions of Transport Phenomena in Polymer Electrolyte Fuel Cells

  • Chapter
  • First Online:
Modeling Transport Phenomena in Porous Media with Applications

Part of the book series: Mechanical Engineering Series ((MES))

  • 1833 Accesses

Abstract

Transport in porous media can be analyzed at various scales. Mesoscale formulations, such as lattice Boltzmann method (LBM) , play an important role in deciphering the pore-scale flow, heat and mass transfer. The present chapter uses LBM to quantify the mass and momentum transport within the gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells . The chapter presents stochastic reconstruction of the GDL microstructure, followed by LBM simulation of two-phase flow and electrochemistry through the GDL pores. The chapter paves the way for connecting the mesoscopic information with the macroscopic physics of fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gottesfeld, T.A. Zawodzinski, Polymer electrolyte fuel cells. Adv. Electrochem. Sci. Eng. 5, 195–302 (1997)

    Article  Google Scholar 

  2. S. Cleghorn et al., PEM fuel cells for transportation and stationary power generation applications. Int. J. Hydrogen Energy 22(12), 1137–1144 (1997)

    Article  Google Scholar 

  3. C.-Y. Wang, Fundamental models for fuel cell engineering. Chem. Rev. 104(10), 4727–4766 (2004)

    Article  Google Scholar 

  4. M. Hogarth, G. Hards, Direct methanol fuel cells. Platin. Met. Rev. 40(4), 150–159 (1996)

    Google Scholar 

  5. R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17–28 (2003)

    Article  Google Scholar 

  6. Y. Wang et al., A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88(4), 981–1007 (2011)

    Article  Google Scholar 

  7. J.K. Nørskov et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004)

    Article  Google Scholar 

  8. K. Broka, P. Ekdunge, Modeling the PEM fuel cell cathode. J. Appl. Electrochem. 27(3), 281–289 (1997)

    Article  Google Scholar 

  9. K. Tüber, D. Pócza, C. Hebling, Visualization of water buildup in the cathode of a transparent PEM fuel cell. J. Power Sources 124(2), 403–414 (2003)

    Article  Google Scholar 

  10. F. Zhang, X. Yang, C. Wang, Liquid water removal from a polymer electrolyte fuel cell. J. Electrochem. Soc. 153(2), A225–A232 (2006)

    Article  Google Scholar 

  11. U. Pasaogullari, C. Wang, Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 151(3), A399–A406 (2004)

    Article  Google Scholar 

  12. U. Pasaogullari, C.-Y. Wang, Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochim. Acta 49(25), 4359–4369 (2004)

    Article  Google Scholar 

  13. U. Pasaogullari, C.-Y. Wang, K.S. Chen, Liquid water transport in polymer electrolyte fuel cells with multi-layer diffusion media, in ASME 2004 International Mechanical Engineering Congress and Exposition ( American Society of Mechanical Engineers, 2004)

    Google Scholar 

  14. U. Pasaogullari et al., Anisotropic heat and water transport in a PEFC cathode gas diffusion layer. J. Electrochem. Soc. 154(8), 823–834 (2007)

    Article  Google Scholar 

  15. P.P. Mukherjee, Q. Kang, C.-Y. Wang, Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy Environ. Sci. 4(2), 346–369 (2011)

    Article  Google Scholar 

  16. S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  17. G. Wang, P.P. Mukherjee, C.-Y. Wang, Direct numerical simulation (DNS) modeling of PEFC electrodes: part I. Regular microstructure. Electrochim. Acta 51(15), 3139–3150 (2006)

    Article  Google Scholar 

  18. J. Newman, K.E. Thomas-Alyea, Electrochemical Systems (Wiley, Hoboken, 2012)

    Google Scholar 

  19. A.M. Bizeray, D.A. Howey, C.W. Monroe, Resolving a discrepancy in diffusion potentials, with a case study for Li-ion batteries. J. Electrochem. Soc. 163(8), E223–E229 (2016)

    Article  Google Scholar 

  20. M.J. Blunt, Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  21. F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. B.J. Daly, Numerical study of the effect of surface tension on interface instability. Phys. Fluids 12(7), 1340–1354 (1969)

    Article  MATH  Google Scholar 

  23. D.C. Rapaport et al., The art of molecular dynamics simulation. Comput. Phys. 10(5), 456 (1996)

    Article  Google Scholar 

  24. R. Ababou et al., Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media. Transp. Porous Media 4(6), 549–565 (1989)

    Article  Google Scholar 

  25. P. Spanne et al., Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001 (1994)

    Article  Google Scholar 

  26. J. Fredrich, B. Menendez, T. Wong, Imaging the pore structure of geomaterials. Science 268(5208), 276 (1995)

    Article  Google Scholar 

  27. P. Adler, J.-F. Thovert, Real porous media: Local geometry and macroscopic properties. Appl. Mech. Rev. 51(9), 537–585 (1998)

    Article  Google Scholar 

  28. S. Torquato, Statistical description of microstructures. Annu. Rev. Mater. Res. 32(1), 77–111 (2002)

    Article  Google Scholar 

  29. P.P. Mukherjee, C.-Y. Wang, Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. J. Electrochem. Soc. 153(5), A840–A849 (2006)

    Article  Google Scholar 

  30. P.P. Mukherjee, C.-Y. Wang, Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells. J. Electrochem. Soc. 154(11), B1121–B1131 (2007)

    Article  Google Scholar 

  31. V.P. Schulz et al., Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach. J. Electrochem. Soc. 154(4), B419–B426 (2007)

    Article  Google Scholar 

  32. K. Schladitz et al., Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comput. Mater. Sci. 38(1), 56–66 (2006)

    Article  Google Scholar 

  33. S.H. Kim, H. Pitsch, Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J. Electrochem. Soc. 156(6), B673–B681 (2009)

    Article  Google Scholar 

  34. U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier-Stokes Equation. Phys. Rev. Lett. 56(14), 1505 (1986)

    Article  Google Scholar 

  35. A.K. Gunstensen et al., Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320 (1991)

    Article  Google Scholar 

  36. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)

    Article  Google Scholar 

  37. X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann Equation. Phys. Rev. E 49(4), 2941 (1994)

    Article  MathSciNet  Google Scholar 

  38. M.R. Swift, W. Osborn, J. Yeomans, Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75(5), 830 (1995)

    Article  Google Scholar 

  39. M.R. Swift et al., Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 54(5), 5041 (1996)

    Article  Google Scholar 

  40. X. He, S. Chen, R. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 152(2), 642–663 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. X. He et al., On the three-dimensional Rayleigh-Taylor instability. Phys. Fluids 11(5), 1143–1152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Q. Kang et al., Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 65(3), 036318 (2002)

    Article  MathSciNet  Google Scholar 

  43. Q. Kang, D. Zhang, S. Chen, Displacement of a two-dimensional immiscible droplet in a channel. Phys. Fluids 14(9), 3203–3214 (2002)

    Article  MATH  Google Scholar 

  44. P.P. Mukherjee, C.-Y. Wang, Q. Kang, Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochim. Acta 54(27), 6861–6875 (2009)

    Article  Google Scholar 

  45. T.E. Springer, T. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138(8), 2334–2342 (1991)

    Article  Google Scholar 

  46. M.L. Perry, J. Newman, E.J. Cairns, Mass Transport in Gas-Diffusion Electrodes: A Diagnostic Tool for Fuel-Cell Cathodes. J. Electrochem. Soc. 145(1), 5–15 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this chapter acknowledge Elsevier, Electrochemical Society, and Royal Society of Chemistry for the figures reproduced in this chapter from the referenced publications of their journals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay K. Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M.K., Mukherjee, P.P., Muralidhar, K. (2018). Mesoscale Interactions of Transport Phenomena in Polymer Electrolyte Fuel Cells. In: Modeling Transport Phenomena in Porous Media with Applications. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-69866-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69866-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69864-9

  • Online ISBN: 978-3-319-69866-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics