Skip to main content

Characterization and Alkaline Pretreatment Lignocellulose of Cabomba caroliniana and Its Role to Secure Sustainable Biofuel Production

  • Chapter
  • First Online:
Transition Towards 100% Renewable Energy

Abstract

Lignocellulose is a component of plant fiber and consists of cellulose, hemicellulose, and lignin. High concentrations of lignin inhibit the access of cellulose-degrading enzymes in the process of hydrolysis. The aims of this research were to characterize the structure of lignocellulose from the aquatic plant C. caroliniana fresh and after pretreatment and to determine the optimum alkali concentration (NaOH 3% or 6%), temperature (55 °C or 80 °C), and pretreatment time (6 h or 12 h) for maximum degradation of lignin. Lignocellulose from fresh C. caroliniana contained 17.30 ± 0.13%, hemicellulose, 14.03 ± 0.32% cellulose, and 11.14 ± 0.68% lignin. The lowest yield of regenerated biomass (14.84 ± 0.36%) and the highest lignin extraction (3.56 ± 0.03 mg L−1) were obtained using 6% NaOH at a temperature of 80 °C for 12 h. Structural analysis of samples gave values of peak intensity for cellulose at 899 cm−1 and 1,200 cm−1; hemicellulose peak intensity was 1,161 cm−1. For fresh samples, the lignin peak intensity was 1,543 cm−1. Surface morphology of the sample showed changes in the plant network, which was disconnected and not compact. Alkaline pretreatment could be advantageous in the bioethanol production process and increase bioethanol fuel availability, thus becoming fundamental in realizing energy security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bui, N. Q., Pascal, F., Franck, R., Cyril, D., Nadege, C., Christpohe, V., & Nadine, E. (2015). FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: Application to SC ethanol liquefaction of pine wood. Fuel Processing Technology, 134, 378–386.

    Article  Google Scholar 

  • Cabrera, E., Maria, J. M., Ricardo, M., Ildefonso, C., Caridad, C., & Ana, B. D. (2014). Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresource Technology, 167, 1–7.

    Article  Google Scholar 

  • [CRCA] Cooperative Research Centres Association. (2003). Weed management guide: Cabomba caroliniana (pp. 1–6). Barton: CRCA.

    Google Scholar 

  • Directorate General of Estate Crops. (2015). Tree crop estate statistics of Indonesia 2014–2016 (Palm Oil) (pp. 12–13). Jakarta: Directorate General of Estate Crops.

    Google Scholar 

  • Fockink, D. H., Marcelo, A. C. M., & Luiz, P. R. (2015). Production of cellulosic ethanol from cotton processing residues after pretreatment with dilute sodium hydroxide and enzymatic hydrolysis. Bioresource Technology, 187, 91–96.

    Article  Google Scholar 

  • Gunam, I. B. W., Wartini, N. M., Anggreni, A. A. M. D., & Pande, M. S. (2011). Delignification sugar cane husks with a solution of sodium hydroxide before the process of saccharification in enzymatic using the enzyme cellulose rough from Aspergillus niger FNU 6018. LIPI PRESS, 3, 24–32.

    Google Scholar 

  • Harmsen, P. F. H., Huijgen, W. J. J., Lopez, L. M. B., & Bakker, R. R. C. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass (pp. 1–49). Wageningen: Biosynergy.

    Google Scholar 

  • Ishizaki, H., & Keiji, H. (2014). Ethanol production from biomass (pp. 243–258). Oxford: Academic, Elsevier.

    Google Scholar 

  • Karunanity, C., & Muthukumarappan, K. (2011). Optimization of alkali, big bluestem particle size and extruder parameters for maximum enzymatic sugar recovery using response surface. BioResources, 6(1), 762–790.

    Google Scholar 

  • Krassig, H., & Schurz, J. (2002). Ullmann’s encyclopedia of industrial chemistry (6th ed.). Weinheim: Wiley-VCH.

    Google Scholar 

  • Kristina, Sari, E. R., & Novia. (2012). Alkaline pretreatment and simultaneous saccharification processes – for production of ethanol fermentation from empty oil palm bunches. Jurnal Teknik Kimia, 18(3), 34–42.

    Google Scholar 

  • Kuttiraja, M., Sindhu, R., Varghese, P. E., Sandhya, S. V., Binod, P., Vani, S., Pandey, A., & Sukumaran, R. K. (2013). Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass and Bioenergy, 59, 142–150.

    Article  Google Scholar 

  • Liu, Y. Y., Jin, L. X., Yu, Z., Cui, Y. L., Min, C. H., Zhen, H. Y., & Jun, X. (2016). Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse. Fuel Processing Technology, 143, 1–6.

    Article  Google Scholar 

  • Nelson, M. L., & O’Connor, R. T. (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses II and II. Journal of Applied Polymer Science, 8, 1325–1341.

    Article  Google Scholar 

  • Oh, S. Y., Dong, I. Y., Younsook, S., Hwan, C. K., Hak, Y. K., Yong, S. C., Won, H. P., & Ji, H. Y. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340, 2376–2391.

    Article  Google Scholar 

  • [RFA] Renewable Fuels Association. (2015). Ethanol facts: Environment. http://www.ethanolrfa.org/pages/ethanol-facts-environment. 6 July 2015.

  • Sheltami, R. M., Ibrahim, A., Ishak, A., Alain, D., & Hanieh, K. (2012). Extraction of cellulose nanocrystals from Mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88, 772–779.

    Article  Google Scholar 

  • Simatupang, H., Nata, A., & Herlina, N. (2012). Study of isolation and yield lignin from empty oil palm bunches. Jurnal Teknik Kimia USU, 1(1), 20–24.

    Google Scholar 

  • Sindhu, R., Pandey, A., & Binod, P. (2015). Alkaline treatment (pp. 51–60). Trivandrum: Centre for Biofuels, Biotechnology Division, CSIR. hlm.

    Google Scholar 

  • Sjostrom, E. (1993). Wood chemistry, fundamentals and application second edition (pp. 1–293). London: Academic.

    Google Scholar 

  • Soccol, C. R., Vincenza, F., Susan, K., Luciana, P. S. V., Vanete, T. S., Adenise, W., & Ashok, P. (2011). Lignocellulosic bioethanol: Current status and future perspectives. Oxford: Academic, Elsevier.

    Google Scholar 

  • Statistics Indonesia. (2015). The official statistics news XVIII edition-production of rice, corn and soybeans. Jakarta: Statistics Indonesia.

    Google Scholar 

  • Statistics Indonesia. (2016). The official statistics news XIX edition-production of rice, corn and soybeans. Jakarta: Statistics Indonesia.

    Google Scholar 

  • Stuart, B. (2004). Infrared spectroscopy: Fundamental and applications (pp. 1–203). Hoboken: Wiley.

    Book  Google Scholar 

  • Tajalli, A. (2015). Guide to the assessment of the potential of biomass as an alternative energy source in Indonesia (pp. 9–11). Jakarta: Penabullu Alliance.

    Google Scholar 

  • Uju, Wijayanta, A. T., Goto, M., & Kamiya, N. (2015). Great potency of seaweed waste biomass from carrageenan industry for bioethanol production by peracetic acid-ionic liquid pretreatment. Biomass and Bioenergy, 81, 63–69.

    Article  Google Scholar 

  • Van Soest, P. J. (1973). Collaborative study of acid-detergent fiber and lignin. Journal of The AOAC, 56(4), 781–784.

    Google Scholar 

  • Wiratmaja, I. G., Gusti, B. W. K., & Nyoman, I., S. W. (2011). The manufacture of the second generation of ethanol by utilizing waste Eucheuma cottonii seaweed as raw material. Jurnal Ilmiah Teknik Mesin CakraM, 5(1), 75–84.

    Google Scholar 

  • Zain, N. F. M., Salma, M. Y., & Ishak, A. (2014). Preparation and characterization of cellulose and nanocellulose from Pomelo (Citrus grandis) Albedo. Nutrition and Food Sciences, 5(1), 1–4.

    Article  Google Scholar 

  • Zhang, W., Noppadon, S., Justin, R. B., & Scott, R. (2016). Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP). Bioresource Technology, 199, 148–154.

    Article  Google Scholar 

  • Zuo, Z., Tian, S., Chen, Z., Li, J., & Yang, X. (2012). Soaking pretreatment of corn stover for bioethanol production followed by anaerobic digestion process. Applied Biochemistry and Biotechnology, 167(7), 2088–2102.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Aquatic Product Technology Department of Bogor Agricultural University, Indonesian Institute of Sciences, Institute for Research and Development of Post Harvest Agriculture and Indonesia Defense University. Thanks to Mr. Deny Verantika, Ms. Anggun Andreyani, and Ms. Asih Tri Marini for supporting the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eka Razak Kurniawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurniawan, E.R., Uju, Santoso, J., Octavian, A., Kuntjoro, Y.D., Sasongko, N.A. (2018). Characterization and Alkaline Pretreatment Lignocellulose of Cabomba caroliniana and Its Role to Secure Sustainable Biofuel Production. In: Sayigh, A. (eds) Transition Towards 100% Renewable Energy. Innovative Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-69844-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69844-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69843-4

  • Online ISBN: 978-3-319-69844-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics