Skip to main content

Towards Integrative Machine Learning and Knowledge Extraction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10344))

Abstract

This Volume is a result of workshop 15w2181 “Advances in interactive knowledge discovery and data mining in complex and big data sets” at the Banff International Research Station for Mathematical Innovation and Discovery. The workshop was dedicated to bring together experts with diverse backgrounds but with one common goal: to understand intelligence for the successful design, development and evaluation of algorithms that can learn from data, extract knowledge from experience, and to improve their learning behaviour over time – similarly as we humans do. Knowledge discovery, data mining, machine learning, artificial intelligence are more or less synonymously used with no strict definitions or boundaries. “Integrative” means to support not only the machine learning & knowledge extraction pipeline, ranging from dealing with data in arbitrarily high-dimensional spaces to the visualization of results into a lower dimension accessible to a human; it is taking into account seemingly disparate fields which can be very fruitful when brought together - for solving problems in complex application domains (e.g. health informatics). Here we want to emphasize that the most important findings in machine learning will be those we do not know yet. In this paper we provide: (1) a short motivation for the integrative approach; (2) brief summaries of the presentations given in Banff; and (3) some personally flavoured, subjective future research outlooks, e.g. in the combination of geometrical approaches with machine learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  2. Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir, T., Danks, D.: A theory of causal learning in children: causal maps and bayes nets. Psychol. Rev. 111, 3–32 (2004)

    Article  Google Scholar 

  3. Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Approach. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  4. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Springer, Heidelberg (1983). doi:10.1007/978-3-662-12405-5

    Book  MATH  Google Scholar 

  5. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015)

    Article  Google Scholar 

  6. Holzinger, A.: On knowledge discovery and interactive intelligent visualization of biomedical data - challenges in human computer interaction & biomedical informatics. In: Helfert, M., Fancalanci, C., Filipe, J. (eds.) DATA 2012, International Conference on Data Technologies and Applications, pp. 5–16 (2012)

    Google Scholar 

  7. Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40511-2_22

    Chapter  Google Scholar 

  8. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intell. Inform. Bull. 15, 6–14 (2014)

    Google Scholar 

  9. Holzinger, A., Jurisica, I.: Knowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutions. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 1–18. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43968-5_1

    Chapter  Google Scholar 

  10. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinf. 15, I1 (2014)

    Article  Google Scholar 

  11. Lee, S., Holzinger, A.: Knowledge discovery from complex high dimensional data. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds.) Solving Large Scale Learning Tasks. Challenges and Algorithms. LNAI, vol. 9580, pp. 148–167. Springer, Cham (2016). doi:10.1007/978-3-319-41706-6_7

    Chapter  Google Scholar 

  12. Holzinger, A.: Introduction to machine learning and knowledge extraction (make). Mach. Learn. Knowl. Extr. 1, 1–20 (2017)

    Article  Google Scholar 

  13. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104, 148–175 (2016)

    Article  Google Scholar 

  14. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  15. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  16. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Article  Google Scholar 

  17. Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C.M., Palade, V.: A glass-box interactive machine learning approach for solving np-hard problems with the human-in-the-loop. arXiv:1708.01104 (2017)

  18. Goebel, R.: Why visualization is an ai-complete problem (and why that matters). In: 20th International Conference on Information Visualisation (IV 2016), pp. 27–32. IEEE (2016)

    Google Scholar 

  19. Lopez, V., Fernandez, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

    Article  Google Scholar 

  20. Piatkowski, N., Lee, S., Morik, K.: Integer undirected graphical models for resource-constrained systems. Neurocomputing 173, 9–23 (2016)

    Article  Google Scholar 

  21. Hess, S., Morik, K., Piatkowski, N.: The primping routine-tiling through proximal alternating linearized minimization. Data Min. Knowl. Disc. 31, 1090–1131 (2017)

    Article  MathSciNet  Google Scholar 

  22. Holzinger, K., Palade, V., Rabadan, R., Holzinger, A.: Darwin or lamarck? Future challenges in evolutionary algorithms for knowledge discovery and data mining. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics: State-of-the-Art and Future Challenges. LNCS, vol. 8401, pp. 35–56. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.: Darwin, lamarck, or baldwin: applying evolutionary algorithms to machine learning techniques. In: Slezak, D., Dunin-Keplicz, B., Lewis, M., Terano, T. (eds.) IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 449–453. IEEE (2014)

    Google Scholar 

  24. Nagrecha, S., Thomas, P.B., Feldman, K., Chawla, N.V.: Predicting chronic heart failure using diagnoses graphs. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS, vol. 10410, pp. 295–312. Springer, Cham (2017). doi:10.1007/978-3-319-66808-6_20

    Chapter  Google Scholar 

  25. Sjöbergh, J., Kuwahara, M., Tanaka, Y.: Visualizing clinical trial data using pluggable components. In: 2012 16th International Conference on Information Visualisation (IV), pp. 291–296. IEEE (2012)

    Google Scholar 

  26. Dlotko, P., Ghrist, R., Juda, M., Mrozek, M.: Distributed computation of coverage in sensor networks by homological methods. Appl. Algebra Eng. Commun. Comput. 23(1/2), 1–30 (2012). doi:10.1007/s00200-012-0167-7

    MATH  MathSciNet  Google Scholar 

  27. Frosini, P.: Measuring shapes by size functions. In: Intelligent Robots and Computer Vision X: Algorithms and Techniques, International Society for Optics and Photonics, pp. 122–133 (1992)

    Google Scholar 

  28. Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70, 99–107 (1993)

    Article  MATH  Google Scholar 

  29. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification, pp. 454–463 cited By 72 (2000)

    Google Scholar 

  30. Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.J.: Persistence barcodes for shapes. Int. J. Shape Model. 11, 149–187 (2005)

    Article  MATH  Google Scholar 

  31. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Frosini, P., Mulazzani, M.: Size homotopy groups for computation of natural size distances. Bull. Belg. Math. Soc. Simon Stevin 6, 455–464 (1999)

    MATH  MathSciNet  Google Scholar 

  33. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42, 71–93 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32, 161–179 (2008)

    Article  MathSciNet  Google Scholar 

  35. Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36, 1543–1557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Am. Math. Soc. 138, 3003–3017 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014)

    Article  Google Scholar 

  38. Di Fabio, B., Ferri, M.: Comparing persistence diagrams through complex vectors (2015)

    Google Scholar 

  39. Frosini, P.: G-invariant persistent homology. Math. Methods Appl. Sci. 38, 1190–1199 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xie, Z., Sun, J., Palade, V., Wang, S., Liu, Y.: Evolutionary sampling: a novel way of machine learning within a probabilistic framework. Inf. Sci. 299, 262–282 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jun, S., Palade, V., Xiao-Jun, W., Wei, F., Zhenyu, W.: Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization. IEEE Trans. Ind. Inform. 10, 222–232 (2014)

    Article  Google Scholar 

  42. Jun, S., Palade, V., Xiaojun, W., Wei, F.: Multiple sequence alignment with hiddenmarkov models learned by random driftparticle swarm optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 11, 243–257 (2014)

    Article  Google Scholar 

  43. Sun, J., Fang, W., Palade, V., Wu, X., Xu, W.: Quantum-behaved particle swarm optimization with gaussian distributed local attractor point. Appl. Math. Comput. 218, 3763–3775 (2011)

    MATH  Google Scholar 

  44. Fogelberg, C., Palade, V.: Dense structural expectation maximisation with parallelisation for efficient large-network structural inference. Int. J. Artif. Intell. Tools 22, 1350011 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all participants of the Banff BIRS workshop 15w2181, specifically to our colleagues from the international HCI-KDD expert network and generally to all colleagues who constantly support our group in fostering the idea of an integrated machine learning approach and in bringing together diverse areas in an cross-disciplinary manner to stimulate fresh ideas and to encourage multi-disciplinary problem solving. The past has shown that many new discoveries are made in overlapping areas of seemingly disjunct fields and the interesting and most important discoveries are those which we have not yet found.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Holzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holzinger, A., Goebel, R., Palade, V., Ferri, M. (2017). Towards Integrative Machine Learning and Knowledge Extraction. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds) Towards Integrative Machine Learning and Knowledge Extraction. Lecture Notes in Computer Science(), vol 10344. Springer, Cham. https://doi.org/10.1007/978-3-319-69775-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69775-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69774-1

  • Online ISBN: 978-3-319-69775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics