Skip to main content

Hairy Root Cultures of Rhodiola rosea to Increase Valuable Bioactive Compounds

  • Chapter
  • First Online:
Production of Plant Derived Natural Compounds through Hairy Root Culture

Abstract

Rhodiola rosea, commonly known as roseroot, is an arctic and alpine plant distributed on the northern hemisphere. The plant has for long been used ethnobotanically as a means of increasing endurance and as a general cure against several diseases. Nowadays, the medicinal properties of roseroot have been characterized, and some of its important bioactive compounds are salidroside and the rosavinoids rosavin, rosarin, and rosin. The primary effect of the plant has been described as adaptogenic, i.e., providing a nonspecific broad-range response. Recently, R. rosea has increased in popularity which has led to overexploitation in nature, and new bio-sustainable production methods are needed for future production. Transformation with the soil bacterium Agrobacterium rhizogenes is a promising strategy to increase the natural content of bioactive compounds within plants. The increase of the bioactive compounds is caused by the root oncogenic loci (rol) genes, present on the transfer DNA within the bacterial plasmid. The rol genes are integrated in the plant host genome during transformation, causing formation of hairy roots. Other species in the Rhodiola genus have been successfully transformed by A. rhizogenes. However, several optimizations in terms of selection of superior plant lines, explant for transformation, and tissue culture are needed in order for R. rosea to serve as a platform for the production of bioactive compounds in hairy root cultures. Once established, several further measures could be taken to increase the content of bioactive compounds further, in that respect genome editing via the CRISPR/Cas9 system is emerging as a powerful beacon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm T (2004) Ethnobotany of Rhodiola rosea (Crassulaceae) in Norway. SIDA Contrib Bot 21:321–344

    Google Scholar 

  • Alpizar E et al (2008) Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altamura MM (2004) Agrobacterium Rhizogenes rolB and rolD genes: regulation and involvement in plant development. Plant Cell Tissue Organ Cult 77:89–101

    Article  CAS  Google Scholar 

  • Archambault A, Strömvik MV (2011) PR-10, defensin and cold dehydrin genes are among those over expressed in Oxytropis (Fabaceae) species adapted to the arctic. Funct Integr Genomics 11:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bettini P, Michelotti S, Bindi D, Giannini R, Capuana M, Buiatti M (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.) Theor Appl Genet 107:831–836

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Fliniaux MA (2000) Effects of the rol C Gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Britton MT, Escobar MA, Dandekar AM (2008) The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 523–563

    Chapter  Google Scholar 

  • Brown RP, Gerbarg PL, Ramazanov Z (2002) Rhodiola rosea: a phytomedicinal overview. HerbalGram 56:40–52

    Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Chernoded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49:1929–1934

    Article  CAS  Google Scholar 

  • Bulgakov VP et al (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97:213–221

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Shkryl YN, Glazunov VP, Fedoreyev SA, Zhuravlev YN (2003) Increase in anthraquinone content in rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway. Biochem Mosc 68:795–801

    Article  CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  CAS  PubMed  Google Scholar 

  • Capone I, Frugis G, Costantino P, Cardarelli M (1994) Expression in different populations of cells of the root meristem is controlled by different domains of the rolB promoter. Plant Mol Biol 25:681–691

    Article  CAS  PubMed  Google Scholar 

  • Carneiro M, Vilaine F (1993) Differential expression of the rol A plant oncogene and its effect on tobacco development. Plant J 3:785–792

    Article  CAS  PubMed  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39

    Article  CAS  PubMed  Google Scholar 

  • Cavaliere C (2009) The effects of climate change on medicinal and aromatic plants. HerbalGram 81:44–57

    Google Scholar 

  • Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Lata H, Varma A (2013) Biotechnology for medicinal plants. Micropropagation and improvement, 1st edn. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Chartier E (2004) Rhodiola rosea L. (Crassulaceae). Rhodiole, Orpin rose. Phytothérapie 12:37–45

    Article  Google Scholar 

  • Christensen B, Müller R (2009) The use of Agrobacterium rhizogenes and its rol-genes for quality improvement in ornamentals. Eur J Hortic Sci 74:275–287

    CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Muller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Sriskandarajah S, Jensen E, Lütken H, Müller R (2010) Transformation with rol genes of Agrobacterium rhizogenes as a strategy to breed compact ornamental plants with improved postharvest quality. Acta Hortic 855:69–75

    Article  CAS  Google Scholar 

  • Christey MC (2001) Use of ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Cuerrier A, Archambault M, Rapinski M, Bruneau A (2014a) Taxonomy of Rhodiola rosea L., with special attention to molecular analyses of Nunavik (Québec) populations. In: Rhodiola rosea. Traditional herbal medicines for modern times. CRC Press, Boca Raton, pp 1–34

    Google Scholar 

  • Cuerrier A, Tendland Y, Rapinski M (2014b) Ethnobotany and conservation of Rhodiola species. In: Rhodiola rosea. Traditional herbal medicines for modern times. CRC Press, Boca Raton, pp 35–64

    Google Scholar 

  • Dehio C, Grossmann K, Schell J, Schmülling T (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 23:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Dell B, Elsegood CL, Ghisalberti EL (1989) Production of verbascoside in callus tissue of Eremophila spp. Phytochemistry 28:1871–1872

    Article  CAS  Google Scholar 

  • Elameen A, Dragland S, Klemsdal SS (2010) Bioactive compounds produced by clones of Rhodiola rosea maintained in the Norwegian germplasm collection. Pharmazie 65:618–623

    CAS  PubMed  Google Scholar 

  • Estruch JJ, Parets-Soler A, Schmülling T, Spena A (1991) Cytosolic localization in transgenic plants of therolC peptide from Agrobacterium rhizogenes. Plant Mol Biol 17:547–550

    Article  CAS  PubMed  Google Scholar 

  • European Union (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC Commission Declaration

    Google Scholar 

  • Fauman EB, Saper MA (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21:413–417

    Article  CAS  PubMed  Google Scholar 

  • Filippini F et al (1996) A plant oncogene as a phosphatase. Nature 379:499–500

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in arabidopsis. Arabidopsis Book 9:e0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Furmanowa M, Oledzka H, Michalska M, Sokolnicka I, Radomska D (1995) Rhodiola rosea L. (Roseroot): in vitro regeneration and the biological activity of roots. In: Bajaj YPS (ed) Medicinal and aromatic plants VIII. Springer, Berlin, Heidelberg, pp 412–426

    Chapter  Google Scholar 

  • Galambosi B (2014) Cultivation of Rhodiola rosea in Europe. In: Rhodiola rosea. CRC Press, Boca Raton, pp 87–124

    Google Scholar 

  • Ganzera M, Yayla Y, Khan IA (2001) Analysis of the marker compounds of Rhodiola rosea L. (Golden Root) by reversed phase high performance liquid chromatography. Chem Pharm Bull 49:465–467

    Article  CAS  PubMed  Google Scholar 

  • Gaudin V, Camilleri C, Jouanin L (1993) Multiple regions of a divergent promoter control the expression of the Agrobacterium rhizogenes aux1 and aux2 plant oncogenes. Mol Gen Genet 239:225–234

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  CAS  PubMed  Google Scholar 

  • Gramsbergen JB et al (2012) Neuroprotective effects of Rhodiola rosea extracts against excitotoxicity and oxygen glucose deprivation in hippocampal slice cultures. In: Poster session presented at 8th FENS forum of neuroscience, Barcelona, Spain

    Google Scholar 

  • Grech-Baran M, Sykłowska-Baranek K, Pietrosiuk A (2015) Biotechnological approaches to enhance salidroside, rosin and its derivatives production in selected Rhodiola spp. in vitro cultures. Phytochem Rev 14:657–674

    Article  CAS  PubMed  Google Scholar 

  • Guest HJ, Allen GA (2014) Geographical origins of North American Rhodiola (Crassulaceae) and phylogeography of the western roseroot, Rhodiola integrifolia. J Biogeogr 41:1070–1080

    Article  Google Scholar 

  • György Z, Tolonen A, Pakonen M, Neubauer P, Hohtola A (2004) Enhancing the production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea by biotransformation of cinnamyl alcohol. Plant Sci 166:229–236

    Article  CAS  Google Scholar 

  • György Z, Tolonen A, Neubauer P, Hohtola A (2005) Enhanced biotransformation capacity of Rhodiola rosea callus cultures for glycosid production. Plant Cell Tissue Organ Cult 83:129–135

    Article  CAS  Google Scholar 

  • Hegelund JN, Lauridsen UB, Wallström SV, Müller R, Lütken H (2017) Transformation of campanula by wild type Agrobacterium rhizogenes. Euphytica 213:51

    Article  CAS  Google Scholar 

  • Himmelboe M, Lauridsen UB, Hegelund JN, Müller R, Lütken H (2015) Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds. International Society for Horticultural Science (ISHS), Leuven, pp 143–149

    Google Scholar 

  • Hu Y, Chen B, Ni T, Li N, Lin Z (2003) Promoter of the rolC gene of Agrobacterium rhizogenes can be strongly regulated in glandular cell of transgenic tobacco. Mol Biotechnol 24:121–125

    Article  CAS  PubMed  Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • Ishaque S, Shamseer L, Bukutu C, Vohra S (2012) Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complement Altern Med 12:70–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshee N, Tascan A, Medina-Bolivar F, Parajuli P, Rimando AM, Shannon DA, Adelberg JW (2013) Scutellaria: biotechnology, phytochemistry and its potential as a commercial medicinal crop. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants: micropropagation and improvement. Springer, Berlin, Heidelberg, pp 69–99

    Chapter  Google Scholar 

  • Kassam K-A, Karamkhudoeva M, Ruelle M, Baumflek M (2010) Medicinal plant use and health sovereignty: findings from the Tajik and Afghan Pamirs. Hum Ecol 38:817–829

    Article  Google Scholar 

  • Khan RS, Thirukkumaran G, Nakamura I, Mii M (2010) Rol (root loci) gene as a positive selection marker to produce marker-free Petunia hybrida. Plant Cell Tissue Organ Cult 101:279–285

    Article  CAS  Google Scholar 

  • Khanum F, Bawa AS, Singh B (2005) Rhodiola rosea: a versatile adaptogen. Compr Rev Food Sci Food Saf 4:55–62

    Article  CAS  Google Scholar 

  • Kim K-S (2000) Opine, a chemical mediator governing physiology of the plant-pathogen, Agrobacterium, in Rhizosphere. Plant Pathol J 16:55–62

    Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    Article  CAS  PubMed  Google Scholar 

  • Kodahl N, Müller R, Lütken H (2016) The Agrobacterium rhizogenes oncogenes rolB and ORF13 increase formation of generative shoots and induce dwarfism in Arabidopsis thaliana (L.) Heynh. Plant Sci 252:22–29

    Article  CAS  PubMed  Google Scholar 

  • Kozyrenko MM, Gontcharova SB, Gontcharov AA (2011) Analysis of the genetic structure of Rhodiola rosea (Crassulaceae) using inter-simple sequence repeat (ISSR) polymorphisms. Flora–Morphol Distrib Funct Ecol Plants 206:691–696

    Article  Google Scholar 

  • Kyndt T et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson K (2013) BCC research. Botanical and plant-derived drugs: global markets. http://www.bccresearch.com/market-research/biotech

  • Lemcke K, Schmülling T (1998) A putative rolB gene homologue of the Agrobacterium rhizogenes TR-DNA has different morphogenetic activity in tobacco than rolB. Plant Mol Biol 36:803–808

    Article  CAS  PubMed  Google Scholar 

  • Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D (1988) Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11:731–744

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2013) The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem Cent J 7:118–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Virus 7:4254–4281

    Article  Google Scholar 

  • Lütken H, Wallström SV, Jensen EB, Christensen B, Müller R (2012) Inheritance of rol -genes from Agrobacterium rhizogenes through two generations in Kalanchoë. Euphytica 188:397–407

    Article  CAS  Google Scholar 

  • Ma C, Wang H, Gu X, Hu L (2012) Large-scale preparative isolation of rosavin from Rhodiola rosea via Ion liquids MAE and subsequent flash adsorption chromatography. Sep Sci Technol 47:1821–1827

    Article  CAS  Google Scholar 

  • Matthysse AG (2006) The genus agrobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 5: proteobacteria: alpha and beta subclasses. Springer, New York, pp 91–114

    Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus agrobacterium to the plant linaria in nature. Mol Plant Microbe Interact 25:1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Leblanc N, Barbier-Brygoo H, Perrot-Rechenmann C, Bouvier-Durand M, Guern J (1994) Alterations of auxin perception in rolB-transformed tobacco protoplasts. Time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiol 105:1209–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro ML, Trovato M, Paolis AD, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700

    Article  CAS  PubMed  Google Scholar 

  • Mishiba K et al (2006) Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol 23:33–38

    Article  CAS  Google Scholar 

  • Mohajjel-Shoja H, Clément B, Perot J, Alioua M, Otten L (2010) Biological activity of the Agrobacterium rhizogenes–derived trolC Gene of Nicotiana tabacum and its functional relation to other plast genes. Mol Plant Microbe Interact 24:44–53

    Article  CAS  Google Scholar 

  • Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N (2004) Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. Plant J 38:260–275

    Article  CAS  PubMed  Google Scholar 

  • Nanjo T et al (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193

    Article  CAS  PubMed  Google Scholar 

  • Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Mano Y (2009) Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signal Behav 4:1145–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O (1993) Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102:363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nin S, Bennici A, Roselli G, Mariotti D, Schiff S, Magherini R (1997) Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites. Plant Cell Rep 16:725–730

    Article  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Hiltunen R (1996) Transgenic crops for improved pharmaceutical products. Field Crops Res 45:57–69

    Article  Google Scholar 

  • Ozyigit II, Dogan I, Tarhan EA (2013) Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in crops. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement. Springer, New York, pp 1–48

    Google Scholar 

  • Palazón J, Cusidó RM, Roig C, Pinol MT (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol Biochem 35:155–162

    Google Scholar 

  • Palazón J, Cusidó RM, Gonzalo J, Bonfill M, Morales C, Piñol MT (1998a) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718

    Article  Google Scholar 

  • Palazón J, Cusidó RM, Roig C, Piñol MT (1998b) Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants. Plant Cell Rep 17:384–390

    Article  Google Scholar 

  • Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 17:481–493

    Article  CAS  PubMed  Google Scholar 

  • Perinskaya YS, Sakanyan EI (2014) Current state and prospects of developing drugs based on rhizomes and roots of Rhodiola rosea L. Pharm Chem J 48:525–528

    Article  CAS  Google Scholar 

  • Peschel W, Prieto JM, Karkour C, Williamson EM (2013) Effect of provenance, plant part and processing on extract profiles from cultivated European Rhodiola rosea L. for medicinal use. Phytochemistry 86:92–102

    Article  CAS  PubMed  Google Scholar 

  • Platikanov S, Evstatieva L (2008) Introduction of wild golden root (Rhodiola rosea L.) as a potential economic crop in Bulgaria. Econ Bot 62:621–627

    Article  Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Article  Google Scholar 

  • Rhodes MJC, Parr AJ, Giulietti A, Aird ELH (1994) Influence of exogenous hormones on the growth and secondary metabolite formation in transformed root cultures. Plant Cell Tissue Organ Cult 38:143–151

    Article  CAS  Google Scholar 

  • Rohloff J (2002) Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry 59:655–661

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  CAS  PubMed  Google Scholar 

  • Saratikov AS, Krasnov EA (1987) Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk State University, Tomsk, pp 69–90

    Google Scholar 

  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  PubMed Central  Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, Zhuravlev YN (2008) Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 100:118–125

    Article  CAS  PubMed  Google Scholar 

  • Shkryl YN et al (2013) The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes. J Biotechnol 168:64–70

    Article  CAS  PubMed  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Spanò L, Mariotti D, Cardarelli M, Branca C, Costantino P (1988) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87:479–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Spongberg SA (1978) The genera of Crassulaceae in the southeastern United States. J Arnold Arbor 59:197–248

    Article  Google Scholar 

  • Stiles AR, Liu C-Z (2013) Hairy root culture: bioreactor design and process intensification. In: Doran PM (ed) Biotechnology of hairy root systems. Springer, Berlin, Heidelberg, pp 91–114

    Chapter  Google Scholar 

  • Tasheva K, Kosturkova G (2010) Bulgarian golden root in vitro cultures for micropropagation and reintroduction. Cent Eur J Biol 5:853–863

    Google Scholar 

  • Tasheva K, Kosturkova G (2012) The role of biotechnology for conservation and biologically active substances production of Rhodiola rosea: endangered medicinal species. Sci World J 2012:13

    Article  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Tripathi L, Tripathi JN (2003) Role of biotechnology in medicinal plants. Trop J Pharm Res 2:243–253

    Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci U S A 98:13449–13453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    Article  CAS  Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23

    Article  CAS  Google Scholar 

  • Vilaine F, Rembur J, Chriqui D, Tepfer M (1998) Modified development in transgenic tobacco plants expressing a rolA∷GUS translational fusion and subcellular localization of the fusion protein. Mol Plant-Microbe Interact 11:855–859

    Article  CAS  PubMed  Google Scholar 

  • Vouillamoz JF, Carron CA, Malnoë P, Baroffio CA, Carlen C (2012) Rhodiola rosea “Mattmark”, the first synthetic cultivar is launched in Switzerland. International Society for Horticultural Science (ISHS), Leuven, pp 185–189

    Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav K, Singh N, Verma S (2012) Plant tissue culture: a biotechnological tool for solving the problem of propagation of multipurpose endangered medicinal plants in India. J Agric Technol 8:305–318

    CAS  Google Scholar 

  • Yokoyama R, Hirose T, Fujii N, Aspuria ET, Kato A, Uchimiya H (1994) The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol Gen Genet MGG 244:15–22

    Google Scholar 

  • Yousef GG, Grace MH, Cheng DM, Belolipov IV, Raskin I, Lila MA (2006) Comparative phytochemical characterization of three Rhodiola species. Phytochemistry 67:2380–2391

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gou M, Liu C-J (2013) Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 25:4994–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Gao Q, Khan G, Luo K, Chen S (2014a) Comparative transcriptome analysis of aboveground and underground tissues of Rhodiola algida, an important ethno-medicinal herb endemic to the Qinghai-Tibetan Plateau. Gene 553:90–97

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-Q, Meng S-Y, Wen J, Rao G-Y (2014b) Phylogenetic relationships and character evolution of Rhodiola (Crassulaceae) based on nuclear ribosomal ITS and plastid trnL-F and psbA-trnH sequences. Syst Bot 39:441–451

    Article  Google Scholar 

  • Zhang X, Gou M, Guo C, Yang H, Liu C-J (2015a) Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation. Plant Physiol 167:337–350

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-Q, Meng S-Y, Wen J, Rao G-Y (2015b) DNA barcoding of Rhodiola (Crassulaceae): a case study on a group of recently diversified medicinal plants from the Qinghai-Tibetan Plateau. PLoS One 10:e0119921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X, Wu Y, Wang X, Liu B, Xu H (2007) Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biol Pharm Bull 30:439–442

    Article  CAS  PubMed  Google Scholar 

  • Zych M et al (2008) Establishment of Rhodiola kirilowii hairy roots using Agrobacterium rhizogenes LBA 9402. Herba Polonica 54:7–16

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Lütken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lütken, H., Meropi-Antypa, N., Kemp, O., Hegelund, J.N., Müller, R. (2017). Hairy Root Cultures of Rhodiola rosea to Increase Valuable Bioactive Compounds. In: Malik, S. (eds) Production of Plant Derived Natural Compounds through Hairy Root Culture . Springer, Cham. https://doi.org/10.1007/978-3-319-69769-7_4

Download citation

Publish with us

Policies and ethics