Advertisement

An Integrated Ontology-Based Approach for Patent Classification in Medical Engineering

  • Sandra GeislerEmail author
  • Christoph Quix
  • Rihan Hai
  • Sanchit Alekh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10649)

Abstract

Medical engineering (ME) is an interdisciplinary domain with short innovation cycles. Usually, researchers from several fields cooperate in ME research projects. To support the identification of suitable partners for a project, we present an integrated approach for patent classification combining ideas from topic modeling, ontology modeling & matching, bibliometric analysis, and data integration. First evaluation results show that the use of semantic technologies in patent classification can indeed increase the quality of the results.

Notes

Acknowledgements

This work has been supported by the Klaus Tschira Stiftung gGmbH in the context of the mi-Mappa project (http://www.dbis.rwth-aachen.de/mi-Mappa/, project no. 00.263.2015). We thank our project partners from the Institute of Applied Medical Engineering at the Helmholtz Institute of RWTH Aachen University & Hospital, especially Dr. Robert Farkas, for the fruitful discussions about the approach and for providing the patent data.

References

  1. 1.
    Awasthi, A., Adetiloye, T., Crainic, T.G.: Collaboration partner selection for city logistics planning under municipal freight regulations. Appl. Math. Model. 40(1), 510–525 (2016)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Balog, K., De Rijke, M.: Determining expert profiles (with an application to expert finding). IJCAI 7, 2657–2662 (2007)Google Scholar
  3. 3.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  4. 4.
    Blei, D.M., Lafferty, J.D.: A correlated topic model of science. Ann. Appl. Stat. 1(1), 17–35 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  6. 6.
    Bonino, D., Ciaramella, A., Corno, F.: Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Inf. 32(1), 30–38 (2010)CrossRefGoogle Scholar
  7. 7.
    BVMed. Branchenbericht Medizintechnologien, June 2015. www.bvmed.de/branchenbericht
  8. 8.
    Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: efficient matching for large real-world schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)Google Scholar
  9. 9.
    Deutsche Gesellschaft für Biomed. Technik im VDE. Empfehlungen zur Verbesserung der Innovationsrahmenbedingungen für Hochtechnologie-Medizin. Technical report, VDE (2012)Google Scholar
  10. 10.
    Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: Agreement maker light results for oaei 2013. In: Proceedings of 8th International Conference on Ontology Matching, pp. 101–108. CEUR-WS.org (2013)
  11. 11.
    Geisler, S., Hai, R., Quix, C.: An ontology-based collaboration recommender system using patents. In: Proceedings of International Conference on Knowledge Engineering and Ontology Development, pp. 389–394 (2015)Google Scholar
  12. 12.
    Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: Proceedings SIGMOD, pp. 2097–2100, San Francisco (2016)Google Scholar
  13. 13.
    Hornik, K., Grün, B.: Topicmodels: an r package for fitting topic models. J. Stat. Softw. 40(13), 1–30 (2011)Google Scholar
  14. 14.
    Meyer, D., Hornik, K., Feinerer, I.: Text mining infrastructure in r. J. Stat. Softw. 25(5), 1–54 (2008)Google Scholar
  15. 15.
    Mogee, M.E., Kolar, R.G.: Patent co-citation analysis of eli lilly & co. patents. Expert Opin. Ther. Pat. 9(3), 291–305 (1999)CrossRefGoogle Scholar
  16. 16.
    Portenoy, J., West, J.D.: Visualizing scholarly publications and citations to enhance author profiles. In: Proceedings of 26th International Conference on World Wide Web (WWW), pp. 1279–1282, Perth (2017)Google Scholar
  17. 17.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)CrossRefGoogle Scholar
  18. 18.
    Rafiei, M., Kardan, A.A.: A novel method for expert finding in online communities based on concept map and pagerank. Hum. Centric Comput. Inf. Sci. 5(1), 1–18 (2015)CrossRefGoogle Scholar
  19. 19.
    Rani, S.K., Raju, K.V.S.V.N., Kumari, V.V.: Expert finding system using latent effort ranking in academic social networks. Int. J. Inf. Technol. Comput. Sci. 2, 21–27 (2015)Google Scholar
  20. 20.
    Schlötelburg, C., Weiß, C., Hahn, P., Becks, T., Mühlbacher, A.C.: Identifizierung von Innovationshürden in der Medizintechnik. Technical report, Bundesministeriums für Bildung und Forschung, October 2008Google Scholar
  21. 21.
    Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of Latent Semantic Analysis, vol. 427, pp. 424–440. Lawrence Erlbaum Associates Inc. (2007)Google Scholar
  22. 22.
    Mari Carmen Suárez-Figueroa. NeOn Methodology for building ontology networks: specification, scheduling and reuse. PhD thesis, Univ. Politecnica de Madrid (2010)Google Scholar
  23. 23.
    Tang, J., Wang, B., Yang, Y., Hu, P., Zhao, Y., Yan, X., Gao, B., Huang, M., Xu, P., Li, W., et al.: Patentminer: topic-driven patent analysis and mining. In: Proceedings 18th ACM SIGKDD, pp. 1366–1374. ACM (2012)Google Scholar
  24. 24.
    Trappey, A.J.C., Trappey, C.V., Hsu, F.C., Hsiao, D.W.: A fuzzy ontological knowledge document clustering methodology. IEEE Trans. Syst. Man Cybern. Part B 39(3), 806–814 (2009)CrossRefGoogle Scholar
  25. 25.
    Tseng, Y.-H., Lin, C.-J., Lin, Y.-I.: Text mining techniques for patent analysis. Inf. Proces. Manag. 43(5), 1216–1247 (2007)CrossRefGoogle Scholar
  26. 26.
    Wang, G.A., Jiao, J., Abrahams, A.S., Fan, W., Zhang, Z.: Expertrank: a topic-aware expert finding algorithm for online knowledge communities. Decis. Support Syst. 54(3), 1442–1451 (2013)CrossRefGoogle Scholar
  27. 27.
    Wanner, L., et al.: Towards content-oriented patent document processing. World Patent Inf. 30(1), 21–33 (2008)CrossRefGoogle Scholar
  28. 28.
    Chong, W., Barnes, D.: A literature review of decision-making models and approaches for partner selection in agile supply chains. Purchasing Supply Manag. 17(4), 256–274 (2011)CrossRefGoogle Scholar
  29. 29.
    Yimam-Seid, D., Kobsa, A.: Expert-finding systems for organizations: problem and domain analysis and the demoir approach. J. Organ. Comput. Electron. Commer. 13(1), 1–24 (2003)Google Scholar
  30. 30.
    Yoon, B., Park, Y.: A text-mining-based patent network: analytical tool for high-technology trend. J. High Technol. Manag. Res. 15(1), 37–50 (2004)CrossRefGoogle Scholar
  31. 31.
    Zhang, L., Li, L., Li, T.: Patent mining: a survey. ACM SIGKDD Explor. Newslett. 16(2), 1–19 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sandra Geisler
    • 2
    Email author
  • Christoph Quix
    • 1
    • 2
  • Rihan Hai
    • 1
  • Sanchit Alekh
    • 1
  1. 1.Information SystemsRWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer Institute for Applied Information Technology FITSankt AugustinGermany

Personalised recommendations