Tethered and Implantable Optical Sensors

Chapter

Abstract

Optical imaging and sensing modalities have been used in medical diagnosis for many years. An obvious example is endoscopy, which allows remote wide-field imaging of internal tissues using optical fibers and/or miniature charge-coupled device (CCD) cameras. While techniques such as endoscopy provide useful tools for clinicians, they do not typically allow a complete diagnosis to be made. Instead, physical biopsies may be required to confirm or refute the presence of disease. Furthermore, endoscopic procedures are both invasive and time-consuming. As such, much research is currently directed toward the development of devices that can provide a complete in vivo diagnosis without the requirement for a physical biopsy. Ideally, such devices should also be minimally or non-invasive, and they should provide immediate identification of disease at the point of care. Additionally, there is significant interest in the development of implantable diagnostic devices that can be left within patients’ bodies for extended periods of time (for several days or longer). Such systems could be used for automated disease diagnosis, and example applications include the detection of post-surgical infections as well as monitoring of the health status of patients undergoing chemotherapy. This chapter focuses on the development of optical instruments that can provide in situ diagnosis at the point of care, with an emphasis on progress towards miniature devices that may function as implants in the future.

List of Acronyms

AFI

Autofluorescence imaging

AMD

Age-related macular degeneration

Arch

Archaerhodopsin

ASIC

Application-specific integrated circuit

BE

Barrett’s Esophagus

CCD

Charge-coupled device

ChR2

Channelrhodopsin-2

CW

Continuous wave

ECG

Electrocardiogram

GI

Gastro-intestinal

IBD

Inflammatory bowel disease

IOL

Intraocular lens

IR

Infrared

LDA

Linear discriminant analysis

LED

Light-emitting diode

LSI

Laser speckle imaging

LSR

Laser speckle rheology

NpHR

Halorhodopsin

OCT

Optical coherence tomography

OFDI

Optical frequency domain imaging

PCA

Principal components analysis

PPG

Photoplethysmography

PpIX

Protoporphyrin IX

PTT

Pulse transit time

PWV

Pulse wave velocity

RF

Radio-frequency

RGC

Retinal ganglion cell

RP

Retinitis pigmentosa

SECM

Spectrally encoded confocal microscopy

SEM

Scanning electron microscopy

SERS

Surface-enhanced Raman spectroscopy

SLM

Spatial light modulator

SNR

Signal-to-noise ratio

SO2

Oxygen saturation

SSI

Surgical site infection

TCE

Tethered capsule endomicroscopy

UTI

Urinary tract infection

VEP

Visual-evoked potential

VPU

Visual processing unit

1D

1-dimensional

2D

2-dimensional

3D

3-dimensional

5-ALA

5-aminolevulinic acid

μLED

Micro-scale light-emitting diode

References

  1. 1.
    C.M. Chen, R. Kwasnicki, B. Lo, G.Z. Yang, Wearable tissue oxygenation monitoring sensor and a forearm vascular phantom design for data validation, in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (2014), pp. 64–68Google Scholar
  2. 2.
    J. Fiala, P. Bingger, D. Ruh, K. Foerster, C. Heilmann, F. Beyersdorf, H. Zappe, A. Seifert, An implantable optical blood pressure sensor based on pulse transit time. Biomed. Microdev. 15(1), 73–81 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Theodor, D. Ruh, J. Fiala, K. Forster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, A. Seifert, Subcutaneous blood pressure monitoring with an implantable optical sensor. Biomed. Microdev. 15(5), 811–820 (2013)CrossRefGoogle Scholar
  4. 4.
    P.C.A. Jeronimo, A.N. Araujo, M. Montenegro, Optical sensors and biosensors based on sol-gel films. Talanta 72(1), 13–27 (2007)CrossRefGoogle Scholar
  5. 5.
    G. Iddan, G. Meron, A. Glukhovsky, P. Swain, Wireless capsule endoscopy. Nature 405(6785), 417 (2000)CrossRefGoogle Scholar
  6. 6.
    M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19(2), 238–240 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Scolaro, D. Lorenser, W.-J. Madore, R.W. Kirk, A.S. Kramer, G.C. Yeoh, N. Godbout, D.D. Sampson, C. Boudoux, R.A. McLaughlin, Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue. Biomed. Opt. Express 6(5), 1767–1781 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Berci, K.A. Forde, History of endoscopy: what lessons have we learned from the past? Surg. Endosc. 14(1), 5–15 (2000)CrossRefGoogle Scholar
  9. 9.
    F. Helmchen, Miniaturization of fluorescence microscopes using fibre optics. Exp. Physiol. 87(6), 737–745 (2002)CrossRefGoogle Scholar
  10. 10.
    T. Wilson, Confocal microscopy, in Confocal Microscopy, ed. by T. Wilson (Academic Press Limited, London, 1990), pp. 1–60Google Scholar
  11. 11.
    T. Wilson, Resolution and optical sectioning in the confocal microscope. J. Microsc. 244(2), 113–121 (2011)CrossRefGoogle Scholar
  12. 12.
    A.F. Gmitro, D. Aziz, Confocal microscopy through a fiberoptic imaging bundle. Opt. Lett. 18(8), 565–567 (1993)CrossRefGoogle Scholar
  13. 13.
    D.L. Dickensheets, G.S. Kino, Micromachined scanning confocal optical microscope. Opt. Lett. 21(10), 764–766 (1996)CrossRefGoogle Scholar
  14. 14.
    F. Helmchen, M.S. Fee, D.W. Tank, W. Denk, A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31(6), 903–912 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Polglase, W. McLaren, S. Skinner, R. Kiesslich, M. Neurath, P. Delaney, A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc. 62(5), 686–695 (2005)CrossRefGoogle Scholar
  16. 16.
    W. Gobel, J.N. Kerr, A. Nimmerjahn, F. Helmchen, Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29(21), 2521–2523 (2004)CrossRefGoogle Scholar
  17. 17.
    M.T. Myaing, D.J. MacDonald, X. Li, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31(8), 1076–1078 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.C. Ahn, B.J. Tromberg, Z. Chen, Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning. J. Biomed. Opt. 14(3), 034005 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Bao, M. Gu, Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy. Opt. Lett. 34(2), 148–150 (2009)CrossRefGoogle Scholar
  20. 20.
    F. Jean, G. Bourg-Heckly, B. Viellerobe, Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis. Opt. Express 15(7), 4008–4017 (2007)CrossRefGoogle Scholar
  21. 21.
    G.T. Kennedy, H.B. Manning, D.S. Elson, M.A.A. Neil, G.W. Stamp, B. Viellerobe, F. Lacombe, C. Dunsby, P.M.W. French, A fluorescence lifetime imaging scanning confocal endomicroscope. J. Biophoton. 3(1–2), 103–107 (2010)Google Scholar
  22. 22.
    G.O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, F. Festy, Fluorescence lifetime endoscopy using TCSPC for the measurement of fret in live cells. Opt. Express 18(11), 11148–11158 (2010)CrossRefGoogle Scholar
  23. 23.
    A.J. Thompson, C. Paterson, M.A. Neil, C. Dunsby, P.M. French, Adaptive phase compensation for ultracompact laser scanning endomicroscopy. Opt. Lett. 36(9), 1707–1709 (2011)CrossRefGoogle Scholar
  24. 24.
    T. Cizmar, M. Mazilu, K. Dholakia, In situ wavefront correction and its application to micromanipulation. Nat. Photonics 4(6), 388–394 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Ploschner, T. Tyc, T. Cizmar, Seeing through chaos in multimode fibres. Nat. Photonics 9(8), 529 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Kim, S.C. Warren, J.M. Stone, J.C. Knight, M.A.A. Neil, C. Paterson, C.W. Dunsby, P.M.W. French, Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre. IEEE J. Sel. Top. Quantum Electron. 11(99), 1 (2015)CrossRefGoogle Scholar
  27. 27.
    N. Bedard, T.S. Tkaczyk, Snapshot spectrally encoded fluorescence imaging through a fiber bundle. J. Biomed. Opt. 17(8) (2012)Google Scholar
  28. 28.
    M. Kyrish, R. Kester, R. Richards-Kortum, T. Tkaczyk, Improving spatial resolution of a fiber bundle optical biopsy system. Endoscopic Microsc. V, 7558 (2010)Google Scholar
  29. 29.
    Y.S. Sabharwal, A.R. Rouse, L. Donaldson, M.F. Hopkins, A.F. Gmitro, Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38(34), 7133–7144 (1999)CrossRefGoogle Scholar
  30. 30.
    A. Rouse, A. Gmitro, Multispectral imaging with a confocal microendoscope. Opt. Lett. 25(23), 1708–1710 (2000)CrossRefGoogle Scholar
  31. 31.
    M. Hughes, G.Z. Yang, High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking. Biomed. Opt. Express 6(4), 1241–1252 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Neumann, F.S. Fuchs, M. Vieth, R. Atreya, J. Siebler, R. Kiesslich, M.F. Neurath, Review article: in vivo imaging by endocytoscopy. Aliment. Pharmacol. Ther. 33(11), 1183–1193 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Hughes, T.P. Chang, G.-Z. Yang, Fiber bundle endocytoscopy. Biomed. Opt. Express 4(12), 2781–2794 (2013)CrossRefGoogle Scholar
  34. 34.
    J.S. Louie, R. Richards-Kortum, S. Anandasabapathy, Applications and advancements in the use of high-resolution microendoscopy for detection of gastrointestinal neoplasia. Clin. Gastroenterol. Hepatol. 12(11), 1789–1792 (2014)CrossRefGoogle Scholar
  35. 35.
    M.-A. Protano, H. Xu, G. Wang, A.D. Polydorides, S.M. Dawsey, J. Cui, L. Xue, F. Zhang, T. Quang, M.C. Pierce, D. Shin, R.A. Schwarz, M.S. Bhutani, M. Lee, N. Parikh, C. Hur, W. Xu, E. Moshier, J. Godbold, J. Mitcham, C. Hudson, R.R. Richards-Kortum, S. Anandasabapathy, Low-cost high-resolution microendoscopy for the detection of esophageal squamous cell neoplasia: an international trial. Gastroenterology 149(2), 321–329 (2015)CrossRefGoogle Scholar
  36. 36.
    P.A. Keahey, T.S. Tkaczyk, K.M. Schmeler, R.R. Richards-Kortum, Optimizing modulation frequency for structured illumination in a fiber-optic microendoscope to image nuclear morphometry in columnar epithelium. Biomed. Opt. Express 6(3), 870–880 (2015)CrossRefGoogle Scholar
  37. 37.
    G.J. Tearney, R.H. Webb, B.E. Bouma, Spectrally encoded confocal microscopy. Opt. Lett. 23(15), 1152–1154 (1998)CrossRefGoogle Scholar
  38. 38.
    C. Boudoux, S.H. Yun, W.Y. Oh, W.M. White, N.V. Iftimia, M. Shishkov, B.E. Bouma, G.J. Tearney, Rapid wavelength-swept spectrally encoded confocal microscopy. Opt. Express 13(20), 8214–8221 (2005)CrossRefGoogle Scholar
  39. 39.
    D. Kang, R.W. Carruth, M. Kim, S.C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, G.J. Tearney, Endoscopic probe optics for spectrally encoded confocal microscopy. Biomed. Opt. Express 4(10), 1925–1936 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Zeidan, D. Yelin, Miniature forward-viewing spectrally encoded endoscopic probe. Opt. Lett. 39(16), 4871–4874 (2014)CrossRefGoogle Scholar
  41. 41.
    M. Abbaci, I. Breuskin, O. Casiraghi, F. De Leeu, M. Ferchiou, S. Temam, C. Laplace-Builhe, Confocal laser endomicroscopy for non-invasive head and neck cancer imaging: a comprehensive review. Oral Oncol. 50(8), 711–716 (2014)CrossRefGoogle Scholar
  42. 42.
    A. Gupta, B.M. Attar, P. Koduru, A.R. Murali, B.T. Go, R. Agarwal, Utility of confocal laser endomicroscopy in identifying high-grade dysplasia and adenocarcinoma in Barrett’s esophagus: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 26(4), 369–377 (2014)CrossRefGoogle Scholar
  43. 43.
    F. Salvatori, S. Siciliano, F. Maione, D. Esposito, S. Masone, M. Persico, G.D. De Palma, Confocal laser endomicroscopy in the study of colonic mucosa in IBD patients: a review. Gastroenterol. Res. Pract. (2012)Google Scholar
  44. 44.
    P. Su, Y. Liu, S. Lin, K. Xiao, P. Chen, S. An, J. He, Y. Bai, Efficacy of confocal laser endomicroscopy for discriminating colorectal neoplasms from non-neoplasms: a systematic review and meta-analysis. Colorectal Dis. 15(1), E1–E12 (2013)CrossRefGoogle Scholar
  45. 45.
    V. Subramanian, K. Ragunath, Advanced endoscopic imaging: a review of commercially available technologies. Clin. Gastroenterol. Hepatol. 12(3), 368 (2014)CrossRefGoogle Scholar
  46. 46.
    P.S.-P. Thong, M. Olivo, S.S. Tandjung, M.M. Movania, F. Lin, K. Qian, H.-S. Seah, K.-C. Soo, Review of confocal fluorescence endomicroscopy for cancer detection. IEEE J. Sel. Top. Quantum Electron. 18(4), 1355–1366 (2012)CrossRefGoogle Scholar
  47. 47.
    A.H. Zehri, W. Ramey, J.F. Georges, M.A. Mooney, N.L. Martirosyan, M.C. Preul, P. Nakaji, Neurosurgical confocal endomicroscopy: a review of contrast agents, confocal systems, and future imaging modalities. Surg. Neurol. Int. 5, 60 (2014)CrossRefGoogle Scholar
  48. 48.
    R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P.R. Galle, M.F. Neurath, Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127(3), 706–713 (2004)CrossRefGoogle Scholar
  49. 49.
    R. Kiesslich, M. Goetz, K. Lammersdorf, C. Schneider, J. Burg, M. Stolte, M. Vieth, B. Nafe, P.R. Galle, M.F. Neurath, Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132(3), 874–882 (2007)CrossRefGoogle Scholar
  50. 50.
    R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P.R. Galle, M.F. Neurath, In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 4(8), 979–987 (2006)CrossRefGoogle Scholar
  51. 51.
    A.M. Buchner, M.W. Shahid, M.G. Heckman, M. Krishna, M. Ghabril, M. Hasan, J.E. Crook, V. Gomez, M. Raimondo, T. Woodward, H.C. Wolfsen, M.B. Wallace, Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology 138(3), 834–842 (2010)CrossRefGoogle Scholar
  52. 52.
    T. Kuiper, F.J.C. van den Broek, S. van Eeden, P. Fockens, E. Dekker, Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions. Am. J. Gastroenterol. 107(4), 543–550 (2012)CrossRefGoogle Scholar
  53. 53.
    V. Gomez, A.M. Buchner, E. Dekker, F.J.C. van den Broek, A. Meining, M.W. Shahid, M.S. Ghabril, P. Fockens, M.G. Heckman, M.B. Wallace, Interobserver agreement and accuracy among international experts with probe-based confocal laser endomicroscopy in predicting colorectal neoplasia. Endoscopy 42(4), 286–291 (2010)CrossRefGoogle Scholar
  54. 54.
    K.B. Dunbar, P. Okolo III, E. Montgomery, M.I. Canto, Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest. Endosc. 70(4), 645–654 (2009)CrossRefGoogle Scholar
  55. 55.
    M. Bajbouj, M. Vieth, T. Roesch, S. Miehlke, V. Becker, M. Anders, H. Pohl, A. Madisch, T. Schuster, R.M. Schmid, A. Meining, Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barrett’s esophagus. Endoscopy 42(6), 435–440 (2010)CrossRefGoogle Scholar
  56. 56.
    P. Sharma, A.R. Meining, E. Coron, C.J. Lightdale, H.C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galiniche, J.A. Abrams, A. Rastogi, N. Gupta, J.E. Michalek, G.Y. Lauwers, M.B. Wallace, Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest. Endosc. 74(3), 465–472 (2011)CrossRefGoogle Scholar
  57. 57.
    M.B. Wallace, P. Sharma, C. Lightdale, H. Wolfsen, E. Coron, A. Buchner, M. Bajbouj, A. Bansal, A. Rastogi, J. Abrams, J.E. Crook, A. Meining, Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy. Gastrointest. Endosc. 72(1), 19–24 (2010)CrossRefGoogle Scholar
  58. 58.
    F.J.C. van den Broek, J.A. van Es, S. van Eeden, P.C.F. Stokkers, C.Y. Ponsioen, J.B. Reitsma, P. Fockens, E. Dekker, Pilot study of probe-based confocal laser endomicroscopy during colonoscopic surveillance of patients with longstanding ulcerative colitis. Endoscopy 43(2), 116–122 (2011)CrossRefGoogle Scholar
  59. 59.
    H. Neumann, M. Vieth, R. Atreya, M. Grauer, J. Siebler, T. Bernatik, M.F. Neurath, J. Mudter, Assessment of Crohn’s disease activity by confocal laser endomicroscopy. Inflammat. Bowel Dis. 18(12), 2261–2269 (2012)CrossRefGoogle Scholar
  60. 60.
    C.-Q. Li, X.-J. Xie, T. Yu, X.-M. Gu, X.-L. Zuo, C.-J. Zhou, W.-Q. Huang, H. Chen, Y.-Q. Li, Classification of inflammation activity in ulcerative colitis by confocal laser endomicroscopy. Am. J. Gastroenterol. 105(6), 1391–1396 (2010)CrossRefGoogle Scholar
  61. 61.
    B. Andre, T. Vercauteren, A.M. Buchner, M. Krishna, N. Ayache, M.B. Wallace, Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps. World J. Gastroenterol. 18(39), 5560–5569 (2012)CrossRefGoogle Scholar
  62. 62.
    S. Gaddam, S.C. Mathur, M. Singh, J. Arora, S.B. Wani, N. Gupta, A. Overhiser, A. Rastogi, V. Singh, N. Desai, S.B. Hall, A. Bansal, P. Sharma, Novel probe-based confocal laser endomicroscopy criteria and interobserver agreement for the detection of dysplasia in Barrett’s esophagus. Am. J. Gastroenterol. 106(11), 1961–1969 (2011)CrossRefGoogle Scholar
  63. 63.
    H. Neumann, C. Langner, M.F. Neurath, M. Vieth, Confocal laser endomicroscopy for diagnosis of Barrett’s esophagus. Front. Oncol. 2, 42 (2012)CrossRefGoogle Scholar
  64. 64.
    I. Smith, P.E. Kline, M. Gaidhane, M. Kahaleh, A review on the use of confocal laser endomicroscopy in the bile duct. Gastroenterol. Res. Pract. (2012)Google Scholar
  65. 65.
    M. Behbahaninia, N.L. Martirosyan, J. Georges, J.A. Udovich, M.Y.S. Kalani, B.G. Feuerstein, P. Nakaji, R.F. Spetzler, M.C. Preul, Intraoperative fluorescent imaging of intracranial tumors: a review. Clin. Neurol. Neurosurg. 115(5), 517–528 (2013)CrossRefGoogle Scholar
  66. 66.
    F. Acerbi, C. Cavallo, M. Broggi, R. Cordella, E. Anghileri, M. Eoli, M. Schiariti, G. Broggi, P. Ferroli, Fluorescein-guided surgery for malignant gliomas: a review. Neurosurg. Rev. 37(4), 547–555 (2014)CrossRefGoogle Scholar
  67. 67.
    C. Ell, S. Remke, A. May, L. Helou, R. Henrich, G. Mayer, The first prospective controlled trial comparing wireless capsule endoscopy with push enteroscopy in chronic gastrointestinal bleeding. Endoscopy 34(9), 685–689 (2002)CrossRefGoogle Scholar
  68. 68.
    B.S. Lewis, P. Swain, Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: results of a pilot study. Gastrointest. Endosc. 56(3), 349–353 (2002)CrossRefGoogle Scholar
  69. 69.
    M. Mylonaki, A. Fritscher-Ravens, P. Swain, Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding. Gut 52(8), 1122–1126 (2003)CrossRefGoogle Scholar
  70. 70.
    M. Pennazio, R. Santucci, E. Rondonotti, C. Abbiati, G. Beccari, F.P. Rossini, R. de Franchis, Outcome of patients with obscure gastrointestinal bleeding after capsule endoscopy: report of 100 consecutive cases. Gastroenterology 126(3), 643–653 (2004)CrossRefGoogle Scholar
  71. 71.
    N. Tabatabaei, D. Kang, T. Wu, M. Kim, R.W. Carruth, J. Leung, J.S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N.S. Nishioka, G.J. Tearney, Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis. Biomed. Opt. Express 5(1), 197–207 (2014)CrossRefGoogle Scholar
  72. 72.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)CrossRefGoogle Scholar
  73. 73.
    B. Cense, N.A. Nassif, T. Chen, M. Pierce, S.H. Yun, B.H. Park, B.E. Bouma, G.J. Tearney, J.F. de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12(11), 2435–2447 (2004)CrossRefGoogle Scholar
  74. 74.
    M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)CrossRefGoogle Scholar
  75. 75.
    S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, J.F. de Boer, High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Opt. Express 11(26), 3598–3604 (2003)CrossRefGoogle Scholar
  76. 76.
    P.H. Tomlins, R.K. Wang, Theory, developments and applications of optical coherence tomography. J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005)CrossRefGoogle Scholar
  77. 77.
    T. Alasil, P.A. Keane, D.A. Sim, A. Tufail, M.E. Rauser, Optical coherence tomography in pediatric ophthalmology: current roles and future directions. Ophthalm. Surg. Lasers Imaging Retina 44(6), S19–S29 (2013)CrossRefGoogle Scholar
  78. 78.
    J.P. Ehlers, Y.K. Tao, S.K. Srivastava, The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery. Curr. Opin. Ophthalmol. 25(3), 221–227 (2014)CrossRefGoogle Scholar
  79. 79.
    T. Garcia, A. Tourbah, E. Setrouk, A. Ducasse, C. Arndt, Optical coherence tomography in neuro-ophthalmology. J. Francais D: Ophtalmol. 35(6), 454–466 (2012)CrossRefGoogle Scholar
  80. 80.
    B.E. Goldhagen, M.T. Bhatti, P.P. Srinivasan, S.J. Chiu, S. Farsiu, M.A. El-Dairi, Retinal atrophy in eyes with resolved papilledema detected by optical coherence tomography. J. Neuro-Ophthalmol. 35(2), 122–126 (2015)Google Scholar
  81. 81.
    G.J. Jaffe, J. Caprioli, Optical coherence tomography to detect and manage retinal disease and glaucoma. Am. J. Ophthalmol. 137(1), 156–169 (2004)CrossRefGoogle Scholar
  82. 82.
    N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, J.F. de Boer, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 12(3), 367–376 (2004)CrossRefGoogle Scholar
  83. 83.
    G. Virgili, F. Menchini, G. Casazza, R. Hogg, R. R. Das, X. Wang, M. Michelessi, Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst. Rev. 1 (2015)Google Scholar
  84. 84.
    M.E. Brezinski, G.J. Tearney, N.J. Weissman, S.A. Boppart, B.E. Bouma, M.R. Hee, A.E. Weyman, E.A. Swanson, J.F. Southern, J.G. Fujimoto, Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77(5), 397–403 (1997)CrossRefGoogle Scholar
  85. 85.
    A.H. Chau, R.C. Chan, M. Shishkov, B. MacNeill, N. Iftimiia, G.J. Tearney, R.D. Kamm, B.E. Bouma, M.R. Kaazempur-Mofrad, Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann. Biomed. Eng. 32(11), 1494–1503 (2004)CrossRefGoogle Scholar
  86. 86.
    G. Ferrante, P. Presbitero, R. Whitbourn, P. Barlis, Current applications of optical coherence tomography for coronary intervention. Int. J. Cardiol. 165(1), 7–16 (2013)CrossRefGoogle Scholar
  87. 87.
    I.K. Jang, B.E. Bouma, D.H. Kang, S.J. Park, S.W. Park, K.B. Seung, K.B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S.L. Houser, H.T. Aretz, G.J. Tearney, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. College Cardiol. 39(4), 604–609 (2002)CrossRefGoogle Scholar
  88. 88.
    O.C. Raffel, G.J. Tearney, D.D. Gauthier, E.F. Halpern, B.E. Bouma, I.-K. Jang, Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler. Thromb. Vasc. Biol. 27(8), 1820–1827 (2007)CrossRefGoogle Scholar
  89. 89.
    T. Roleder, J. Jakala, G.L. Kaluza, L. Partyka, K. Proniewska, E. Pociask, W. Zasada, W. Wojakowski, Z. Gasior, D. Dudek, The basics of intravascular optical coherence tomography. Postepy W Kardiologii Interwencyjnej 11(2), 74–83 (2015)Google Scholar
  90. 90.
    A. Tanaka, G. J. Tearney, B.E. Bouma, Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography. J. Biomed. Opt. 15(1) (2010)Google Scholar
  91. 91.
    G.J. Tearney, S. Waxman, M. Shishkov, B.J. Vakoc, M.J. Suter, M.I. Freilich, A.E. Desjardins, W.-Y. Oh, L.A. Bartlett, M. Rosenberg, B.E. Bouma, Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC-Cardiovasc. Imag. 1(6), 752–761 (2008)CrossRefGoogle Scholar
  92. 92.
    G.J. Tearney, H. Yabushita, S.L. Houser, H.T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, E.F. Halpern, B.E. Bouma, Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1), 113–119 (2003)CrossRefGoogle Scholar
  93. 93.
    L. Vignali, E. Solinas, E. Emanuele, Research and clinical applications of optical coherence tomography in invasive cardiology: a review. Curr. Cardiol. Rev. 10(4), 369–376 (2014)CrossRefGoogle Scholar
  94. 94.
    H. Yabushita, B.E. Bourna, S.L. Houser, T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, D.H. Kang, E.F. Halpern, G.J. Tearney, Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13), 1640–1645 (2002)CrossRefGoogle Scholar
  95. 95.
    S. Brand, J.M. Poneros, B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, Optical coherence tomography in the gastrointestinal tract. Endoscopy 32(10), 796–803 (2000)CrossRefGoogle Scholar
  96. 96.
    J.A. Evans, B.E. Bouma, J. Bressner, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, N.S. Nishioka, G.J. Tearney, Identifying intestinal metaplasia at the squamocolumnar junction by using optical coherence tomography. Gastrointest. Endosc. 65(1), 50–56 (2007)CrossRefGoogle Scholar
  97. 97.
    C.-P. Liang, C.-W. Chen, J. Wierwille, J. Desai, R. Gullapalli, R. Mezrich, C.-M. Tang, Y. Chen, Endoscopic microscopy using optical coherence tomography. Curr. Med. Imag. Rev. 8(3), 174–193 (2012)CrossRefGoogle Scholar
  98. 98.
    M.J. Suter, B.J. Vakoc, P.S. Yachimski, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, B.E. Bouma, N.S. Nishioka, G.J. Tearney, Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging. Gastrointest. Endosc. 68(4), 745–753 (2008)CrossRefGoogle Scholar
  99. 99.
    G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, J.G. Fujimoto, Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am. J. Gastroenterol. 92(10), 1800–1804 (1997)Google Scholar
  100. 100.
    B.J. Vakoc, M. Shishko, S.H. Yun, W.-Y. Oh, M.J. Suter, A.E. Desjardins, J.A. Evans, N.S. Nishioka, G.J. Tearney, B.E. Bouma, Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest. Endosc. 65(6), 898–905 (2007)CrossRefGoogle Scholar
  101. 101.
    S.A. Coulman, J.C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, B. Povazay, In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography. Pharma. Res. 28(1), 66–81 (2011)CrossRefGoogle Scholar
  102. 102.
    T. Gambichler, V. Jaedicke, S. Terras, Optical coherence tomography in dermatology: technical and clinical aspects. Arch. Dermatol. Res. 303(7), 457–473 (2011)CrossRefGoogle Scholar
  103. 103.
    T. Gambichler, A. Pljakic, L. Schmitz, Recent advances in clinical application of optical coherence tomography of human skin. Clin. Cosmet. Investig. Dermatol. 8, 345–354 (2015)Google Scholar
  104. 104.
    J. Welzel, Optical coherence tomography in dermatology: a review. Skin Res. Tech. 7(1), 1–9 (2001)CrossRefGoogle Scholar
  105. 105.
    A.S. Fjeldstad, N.G. Carlson, J.W. Rose, Optical coherence tomography as a biomarker in multiple sclerosis. Expert Opinion Med. Diagnost. 6(6), 593–604 (2012)CrossRefGoogle Scholar
  106. 106.
    L.M. Simao, The contribution of optical coherence tomography in neurodegenerative diseases. Curr. Opinion Ophthalmol. 24(6), 521–527 (2013)CrossRefGoogle Scholar
  107. 107.
    A. Vidal-Jordana, J. Sastre-Garriga, X. Montalban, Optical coherence tomography in multiple sclerosis. Rev. Neurol. 54(9), 556–563 (2012)Google Scholar
  108. 108.
    A. Vinekar, S. Mangalesh, C. Jayadev, R.S. Maldonado, N. Bauer, C.A. Toth, Retinal imaging of infants on spectral domain optical coherence tomography. Biomed. Res. Int. (2015)Google Scholar
  109. 109.
    K.A. Townsend, G. Wollstein, J.S. Schuman, Imaging of the retinal nerve fibre layer for glaucoma. Br. J. Ophthalmol. 93(2), 139–143 (2009)CrossRefGoogle Scholar
  110. 110.
    G.J. Tearney, OCT imaging of macrophages a bright spot in the study of inflammation in human atherosclerosis. JACC Cardiovasc. Imag. 8(1), 73–75 (2015)CrossRefGoogle Scholar
  111. 111.
    K. Toutouzas, Y.S. Chatzizisis, M. Riga, A. Giannopoulos, A.P. Antoniadis, S. Tu, Y. Fujino, D. Mitsouras, C. Doulaverakis, I. Tsampoulatidis, V.G. Koutkias, K. Bouki, Y. Li, I. Chouvarda, G. Cheimariotis, N. Maglaveras, I. Kompatsiaris, S. Nakamura, J.H.C. Reiber, F. Rybicki, H. Karvounis, C. Stefanadis, D. Tousoulis, G.D. Giannoglou, Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 240(2), 510–519 (2015)CrossRefGoogle Scholar
  112. 112.
    R.A. McLaughlin, B.C. Quirk, A. Curatolo, R.W. Kirk, L. Scolaro, D. Lorenser, P.D. Robbins, B.A. Wood, C.M. Saunders, D.D. Sampson, Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J. Sel. Top. Quantum Electron. 18(3), 1184–1191 (2012)CrossRefGoogle Scholar
  113. 113.
    C. Zhou, D.W. Cohen, Y. Wang, H.-C. Lee, A.E. Mondelblatt, T.-H. Tsai, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res. 70(24), 10071–10079 (2010)CrossRefGoogle Scholar
  114. 114.
    A.M. Zysk, S.A. Boppart, Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J. Biomed. Opt. 11(5) (2006)Google Scholar
  115. 115.
    B.G. Muller, D.M. de Bruin, W. van den Bos, M.J. Brandt, J.F. Velu, M.T.J. Bus, D.J. Faber, D. Savci, P.J. Zondervan, T.M. de Reijke, P.L. Pes, J. de la Rosette, T.G. van Leeuwen, Prostate cancer diagnosis: the feasibility of needle-based optical coherence tomography. J. Med Imag. (Bellingham, Wash.) 2(3), 037501 (2015)Google Scholar
  116. 116.
    M.T.J. Bus, D.M. de Bruin, D.J. Faber, G.M. Kamphuis, P.J. Zondervan, M.P.L. Pes, T.M. de Reijke, O. Traxer, T.G. van Leeuwen, J.J.M.C.H. de la Rosette, Optical diagnostics for upper urinary tract urothelial cancer: technology, thresholds, and clinical applications. J. Endourol. 29(2), 113–123 (2015)CrossRefGoogle Scholar
  117. 117.
    J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 120(1), 7–12 (2001)CrossRefGoogle Scholar
  118. 118.
    H.G. Bezerra, M.A. Costa, G. Guagliumi, A.M. Rollins, D.I. Simon, Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc. Interven. 2(11), 1035–1046 (2009)CrossRefGoogle Scholar
  119. 119.
    G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321), 2037–2039 (1997)CrossRefGoogle Scholar
  120. 120.
    J. Ha, H. Yoo, G.J. Tearney, B.E. Bouma, Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography. Int. J. Cardiovasc. Imag. 28(6), 1299–1304 (2012)CrossRefGoogle Scholar
  121. 121.
    I. Ben-Dor, M. Mahmoudi, A.D. Pichard, L.F. Satler, R. Waksman, Optical coherence tomography: a new imaging modality for plaque characterization and stent implantation. J. Interven. Cardiol. 24(2), 184–192 (2011)CrossRefGoogle Scholar
  122. 122.
    B.E. Bouma, G.J. Tearney, H. Yabushita, M. Shishkov, C.R. Kauffman, D.D. Gauthier, B.D. MacNeill, S.L. Houser, H.T. Aretz, E.F. Halpern, I.K. Jang, Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89(3), 317–320 (2003)CrossRefGoogle Scholar
  123. 123.
    R.C. Chan, A.H. Chau, W.C. Karl, S. Nadkarni, A.S. Khalil, N. Iftimia, M. Shishkov, G.J. Tearney, M.R. Kaazempur-Mofrad, B.E. Bouma, OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt. Express 12(19), 4558–4572 (2004)CrossRefGoogle Scholar
  124. 124.
    X. Yang, D. Lorenser, R.A. McLaughlin, R.W. Kirk, M. Edmond, M.C. Simpson, M.D. Grounds, D.D. Sampson, Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed. Opt. Express 5(1), 136–148 (2014)CrossRefGoogle Scholar
  125. 125.
    B.C. Quirk, R.A. McLaughlin, A. Curatolo, R.W. Kirk, P.B. Noble, D.D. Sampson, In situ imaging of lung alveoli with an optical coherence tomography needle probe. J. Biomed. Opt. 16(3) (2011)Google Scholar
  126. 126.
    D. Lorenser, X. Yang, R.W. Kirk, B.C. Quirk, R.A. McLaughlin, D.D. Sampson, Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett. 36(19), 3894–3896 (2011)CrossRefGoogle Scholar
  127. 127.
    M.J. Gora, J.S. Sauk, R.W. Carruth, W. Lu, D.T. Carlton, A. Soomro, M. Rosenberg, N.S. Nishioka, G.J. Tearney, Imaging the upper gastrointestinal tract in unsedated patients using tethered capsule endomicroscopy. Gastroenterology 145(4), 723–725 (2013)CrossRefGoogle Scholar
  128. 128.
    K. Liang, G. Traverso, H.-C. Lee, O.O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, J.G. Fujimoto, Ultrahigh speed en face OCT capsule for endoscopic imaging. Biomed. Opt. Express 6(4), 1146–1163 (2015)CrossRefGoogle Scholar
  129. 129.
    M.D. Stern, In vivo evaluation of microcirculation by coherent light scattering. Nature 254(5495), 56–58 (1975)CrossRefGoogle Scholar
  130. 130.
    D.A. Boas, A.K. Dunn, Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15(1), 011109 (2010)CrossRefGoogle Scholar
  131. 131.
    A.F. Fercher, J.D. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37(5), 326–330 (1981)CrossRefGoogle Scholar
  132. 132.
    H. Li, Q. Liu, H.Y. Lu, Y. Li, H.F. Zhang, S.B. Tong, Directly measuring absolute flow speed by frequency-domain laser speckle imaging. Opt. Express 22(17), 21079–21087 (2014)CrossRefGoogle Scholar
  133. 133.
    Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, H. Fujii, Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest. Ophthalmol. Vis. Sci. 35(11), 3825–3834 (1994)Google Scholar
  134. 134.
    Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, H. Fujii, Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp. Eye Res. 60(4), 373–383 (1995)CrossRefGoogle Scholar
  135. 135.
    M. Nagahara, Y. Tamaki, A. Tomidokoro, M. Araie, In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest. Ophthalmol. Vis. Sci. 52(1), 87–92 (2011)CrossRefGoogle Scholar
  136. 136.
    H. Isono, S. Kishi, Y. Kimura, N. Hagiwara, N. Konishi, H. Fujii, Observation of choroidal circulation using index of erythrocytic velocity. Arch. Ophthalmol. 121(2), 225–231 (2003)CrossRefGoogle Scholar
  137. 137.
    B. Choi, N.M. Kang, J.S. Nelson, Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model. Microvasc. Res. 68(2), 143–146 (2004)CrossRefGoogle Scholar
  138. 138.
    B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, J. Stuart Nelson, Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics. J. Biomed. Opt. 11(4), 041129 (2006)CrossRefGoogle Scholar
  139. 139.
    K.R. Forrester, J. Tulip, C. Leonard, C. Stewart, R.C. Bray, A laser speckle imaging technique for measuring tissue perfusion. IEEE Trans. Biomed. Eng. 51(11), 2074–2084 (2004)CrossRefGoogle Scholar
  140. 140.
    Y.C. Huang, T.L. Ringold, J.S. Nelson, B. Choi, Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers Surg. Med. 40(3), 167–173 (2008)CrossRefGoogle Scholar
  141. 141.
    A.K. Dunn, A. Devor, A.M. Dale, D.A. Boas, Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27(2), 279–290 (2005)CrossRefGoogle Scholar
  142. 142.
    A.K. Dunn, H. Bolay, M.A. Moskowitz, D.A. Boas, Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001)CrossRefGoogle Scholar
  143. 143.
    H. Bolay, U. Reuter, A.K. Dunn, Z. Huang, D.A. Boas, M.A. Moskowitz, Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8(2), 136–142 (2002)CrossRefGoogle Scholar
  144. 144.
    C. Ayata, H.K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D.A. Boas, A.K. Dunn, M.A. Moskowitz, Pronounced hypoperfusion during spreading depression in mouse cortex. J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004)CrossRefGoogle Scholar
  145. 145.
    H.K. Shin, A.K. Dunn, P.B. Jones, D.A. Boas, M.A. Moskowitz, C. Ayata, Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J. Cereb. Blood Flow Metab. 26(8), 1018–1030 (2006)CrossRefGoogle Scholar
  146. 146.
    H.K. Shin, A.K. Dunn, P.B. Jones, D.A. Boas, E.H. Lo, M.A. Moskowitz, C. Ayata, Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130(Pt 6), 1631–1642 (2007)CrossRefGoogle Scholar
  147. 147.
    S. Zhang, T.H. Murphy, Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol. 5(5), e119 (2007)CrossRefGoogle Scholar
  148. 148.
    Z. Hajjarian, S.K. Nadkarni, Evaluating the viscoelastic properties of tissue from laser speckle fluctuations. Sci. Rep. 2 (2012)Google Scholar
  149. 149.
    M.M. Tripathi, Z. Hajjarian, E.M. Van Cott, S.K. Nadkarni, Assessing blood coagulation status with laser speckle rheology. Biomed. Opt. Express 5(3), 817–831 (2014)CrossRefGoogle Scholar
  150. 150.
    Z. Hajjarian, M.M. Tripathi, S.K. Nadkarni, Optical thromboelastography to evaluate whole blood coagulation. J. Biophotonics 8(5), 372–381 (2015)CrossRefGoogle Scholar
  151. 151.
    S.K. Nadkarni, B.E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M.S. Minsky, J.T. Motz, S.L. Houser, G.J. Tearney, Characterization of atherosclerotic plaques by laser speckle imaging. Circulation 112(6), 885–892 (2005)CrossRefGoogle Scholar
  152. 152.
    S.K. Nadkarni, A. Bilenca, B.E. Bouma, G.J. Tearney, Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images. J. Biomed. Opt. 11(2), 8 (2006)CrossRefGoogle Scholar
  153. 153.
    S.K. Nadkarni, Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture. J. Biomed. Opt. 18(12), (2013)Google Scholar
  154. 154.
    J. Wang, S.K. Nadkarni, The influence of optical fiber bundle parameters on the transmission of laser speckle patterns. Opt. Express 22(8), 8908–8918 (2014)CrossRefGoogle Scholar
  155. 155.
    A.A. Stratonnikov, V.B. Loschenov, Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 6(4), 457–467 (2001)CrossRefGoogle Scholar
  156. 156.
    R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D.R. Venturoli, In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: discriminant analysis between nevus and melanoma. Photochem. Photobiol. 55(4), 515–522 (1992)CrossRefGoogle Scholar
  157. 157.
    N. Rajaram, T.J. Aramil, K. Lee, J.S. Reichenberg, T.H. Nguyen, J.W. Tunnell, Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. Appl. Opt. 49(2), 142–152 (2010)CrossRefGoogle Scholar
  158. 158.
    A.J. Thompson, S. Coda, M. Brydegaard Sørensen, G. Kennedy, R. Patalay, U. Waitong-Bramming, P.A.A. De Beule, M.A.A. Neil, S. Andersson-Engels, N. Bendsoe, P.M.W. French, K. Svanberg, C. Dunsby, In vivo measurements of diffuse reflectance and time-resolved autofluorescence emission spectra of basal cell carcinomas. J. Biophotonics 5(3), 240–254 (2012)CrossRefGoogle Scholar
  159. 159.
    I.J. Bigio, T.M. Johnson, J.R. Mourant, B.J. Tromberg, Y. Tadir, M. Fehr, H. Nilsson, V.C. Darrow, Determination of the cervical transformation zone using elastic-scattering spectroscopy, in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases III: Optical Biopsy, Proceedings, vol. 2679 (1996), pp. 85–91Google Scholar
  160. 160.
    J.R. Mourant, T.J. Bocklage, T.M. Powers, H.M. Greene, K.L. Bullock, L.R. Marr-Lyon, M.H. Dorin, A.G. Waxman, M.M. Zsemlye, H.O. Smith, In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol. Oncol. 105(2), 439–445 (2007)CrossRefGoogle Scholar
  161. 161.
    J.R. Mourant, T.J. Bocklage, T.M. Powers, H.M. Greene, M.H. Dorin, A.G. Waxman, M.M. Zsemlye, H.O. Smith, Detection of cervical intraepithelial neoplasias and cancers in cervical tissue by in vivo light scattering. J. Lower Genital Tract Dis. 13(4), 216–223 (2009)CrossRefGoogle Scholar
  162. 162.
    J.R. Mourant, I.J. Bigio, J. Boyer, R.L. Conn, T. Johnson, T. Shimada, Spectroscopic diagnosis of bladder cancer with elastic light scattering. Lasers Surg. Med. 17(4), 350–357 (1995)CrossRefGoogle Scholar
  163. 163.
    J.R. Mourant, J. Boyer, T.M. Johnson, J. Lacey, I.J. Bigio, A. Bohorfoush, M. Mellow, Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the los-alamos optical biopsy system, in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, Proceedings, vol. 2387 (1995), pp. 210–217Google Scholar
  164. 164.
    H.W. Wang, J.K. Jiang, C.H. Lin, J.K. Lin, G.J. Huang, J.S. Yu, Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors. Opt. Express 17(4), 2805–2817 (2009)CrossRefGoogle Scholar
  165. 165.
    J.P. Culver, T. Durduran, T. Furuya, C. Cheung, J.H. Greenberg, A.G. Yodh, Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J. Cerebral Blood Flow Metabol. 23(8), 911–924 (2003)CrossRefGoogle Scholar
  166. 166.
    H. Levy, D. Ringuette, O. Levi, Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. Biomed. Opt. Express 3(4), 777–791 (2012)CrossRefGoogle Scholar
  167. 167.
    Y. Shang, L. Chen, M. Toborek, G.Q. Yu, Diffuse optical monitoring of repeated cerebral ischemia in mice. Opt. Express 19(21), 20301–20315 (2011)CrossRefGoogle Scholar
  168. 168.
    F.F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977)CrossRefGoogle Scholar
  169. 169.
    N. Sato, T. Kamada, M. Shichiri, S. Kawano, H. Abe, B. Hagihara, Measurement of hemoperfusion and oxygen sufficiency in gastric mucosa in vivo. Evidence of mucosal hypoxia as the cause of hemorrhagic shock-induced gastric mucosal lesion in rats. Gastroenterology 76(4), 814–819 (1979)Google Scholar
  170. 170.
    G.A. Mook, A. Buursma, A. Gerding, G. Kwant, W.G. Zijlstra, Spectrophotometric determination of oxygen saturation of blood independent of the presence of indocyanine green. Cardiovasc. Res. 13(4), 233–237 (1979)CrossRefGoogle Scholar
  171. 171.
    F.W. Leung, T. Morishita, E.H. Livingston, T. Reedy, P.H. Guth, Reflectance spectrophotometry for the assessment of gastroduodenal mucosal perfusion. Am. J. Physiol. 252(6 Pt 1), G797–G804 (1987)Google Scholar
  172. 172.
    J.W. Feather, M. Hajizadeh-Saffar, G. Leslie, J.B. Dawson, A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments. Phys. Med. Biol. 34(7), 807–820 (1989)CrossRefGoogle Scholar
  173. 173.
    K.H. Frank, M. Kessler, K. Appelbaum, W. Dummler, The erlangen micro-lightguide spectrophotometer empho I. Phys. Med. Biol. 34(12), 1883–1900 (1989)CrossRefGoogle Scholar
  174. 174.
    E.M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation. Anal. Biochem. 195(2), 330–351 (1991)CrossRefGoogle Scholar
  175. 175.
    I.J. Bigio, J.R. Mourant, G. Los, Elastic-scattering spectroscopy for quantitative measurement of chemotherapy and PDT drug concentrations in vivo, in Optical Biopsies and Microscopic Techniques III, Proceedings, vol. 3568 (1999), pp. 26–30Google Scholar
  176. 176.
    J.R. Mourant, I.J. Bigio, J. Boyer, J. Lacey, T. Johnson, R.L. Conn, Diagnosis of tissue pathology with elastic scattering spectroscopy, in Leos’94—Conference Proceedings, vol. 1 (1994), pp. 17–18Google Scholar
  177. 177.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)CrossRefGoogle Scholar
  178. 178.
    J. Haringsma, G.N.J. Tytgat, H. Yano, H. Iishi, M. Tatsuta, T. Ogihara, H. Watanabe, N. Sato, N. Marcon, B.C. Wilson, R.W. Cline, Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology. Gastrointest. Endosc. 53(6), 642–650 (2001)CrossRefGoogle Scholar
  179. 179.
    F.J.C. van den Broek, P. Fockens, S. van Eeden, J.B. Reitsma, J.C.H. Hardwick, P.C.F. Stokkers, E. Dekker, Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut 57(8), 1083–1089 (2008)CrossRefGoogle Scholar
  180. 180.
    W.L. Curvers, R. Singh, L.M.W.-K. Song, H.C. Wolfsen, K. Ragunath, K. Wang, M.B. Wallace, P. Fockens, J.J.G.H.M. Bergman, Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57(2), 167–172 (2008)CrossRefGoogle Scholar
  181. 181.
    M.A. Kara, F.P. Peters, P. Fockens, F.J.W. ten Kate, J.J.G.H.M. Bergman, Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus. Gastrointest. Endosc. 64(2), 176–185 (2006)CrossRefGoogle Scholar
  182. 182.
    N. Rajaram, J.S. Reichenberg, M.R. Migden, T.H. Nguyen, J.W. Tunnell, Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer. Lasers Surg. Med. 42(10), 716–727 (2010)CrossRefGoogle Scholar
  183. 183.
    L. Brancaleon, A.J. Durkin, J.H. Tu, G. Menaker, J.D. Fallon, N. Kollias, In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem. Photobiol. 73(2), 178–183 (2001)CrossRefGoogle Scholar
  184. 184.
    M.A. D’Hallewin, L. Bezdetnaya, F. Guillemin, Fluorescence detection of bladder cancer: a review. Eur. Urol. 42(5), 417–425 (2002)CrossRefGoogle Scholar
  185. 185.
    L. Silveira Jr., J.A. Betiol Filho, F.L. Silveira, R.A. Zangaro, M.T. Pacheco, Laser-induced fluorescence at 488 nm excitation for detecting benign and malignant lesions in stomach mucosa. J. Fluoresc. 18(1), 35–40 (2008)CrossRefGoogle Scholar
  186. 186.
    C.R. Kapadia, F.W. Cutruzzola, K.M. O’Brien, M.L. Stetz, R. Enriquez, L.I. Deckelbaum, Laser-induced fluorescence spectroscopy of human colonic mucosa. Detection of adenomatous transformation. Gastroenterology 99(1), 150–157 (1990)CrossRefGoogle Scholar
  187. 187.
    Y. Yang, G.C. Tang, M. Bessler, R.R. Alfano, Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer. Lasers Life Sci. 6(4), 259–276 (1995)Google Scholar
  188. 188.
    D.C. De Veld, M. Skurichina, M.J. Witjes, R.P. Duin, H.J. Sterenborg, J.L. Roodenburg, Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy. J. Biomed. Opt. 9(5), 940–950 (2004)MATHCrossRefGoogle Scholar
  189. 189.
    P.A.A. De Beule, C. Dunsby, N.P. Galletly, G.W. Stamp, A.C. Chu, U. Anand, P. Anand, C.D. Benham, A. Naylor, P.M.W. French, A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev. Sci. Instrum. 78(12), 123101 (2007)CrossRefGoogle Scholar
  190. 190.
    S. Coda, A.J. Thompson, G.T. Kennedy, K.L. Roche, L. Ayaru, D.S. Bansi, G.W. Stamp, A.V. Thillainayagam, P.M. French, C. Dunsby, Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe. Biomed. Opt. Express 5(2), 515–538 (2014)CrossRefGoogle Scholar
  191. 191.
    P.V. Butte, B.K. Pikul, A. Hever, W.H. Yong, K.L. Black, L. Marcu, Diagnosis of meningioma by time-resolved fluorescence spectroscopy. J. Biomed. Opt. 10(6), 064026 (2005)CrossRefGoogle Scholar
  192. 192.
    L. Marcu, J.A. Jo, P.V. Butte, W.H. Yong, B.K. Pikul, K.L. Black, R.C. Thompson, Fluorescence lifetime spectroscopy of glioblastoma multiforme. Photochem. Photobiol. 80(1), 98–103 (2004)CrossRefGoogle Scholar
  193. 193.
    N.P. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D.S. Elson, M.A.A. Neil, A.C. Chu, P.M.W. French, G.W. Stamp, Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br. J. Dermatol. 159(1), 152–161 (2008)CrossRefGoogle Scholar
  194. 194.
    J. McGinty, N.P. Galletly, C. Dunsby, I. Munro, D.S. Elson, J. Requejo-Isidro, P. Cohen, R. Ahmad, A. Forsyth, A.V. Thillainayagam, M.A.A. Neil, P.M.W. French, G.W. Stamp, Wide-field fluorescence lifetime imaging of cancer. Biomed. Opt. Express 1(2), 627–640 (2010)CrossRefGoogle Scholar
  195. 195.
    H.M. Chen, C.P. Chiang, C. You, T.C. Hsiao, C.Y. Wang, Time-resolved autofluorescence spectroscopy for classifying normal and premalignant oral tissues. Lasers Surg. Med. 37(1), 37–45 (2005)CrossRefGoogle Scholar
  196. 196.
    M. Mycek, K. Schomacker, N. Nishioka, Colonic polyp differentiation using time-resolved autofluorescence spectroscopy. Gastrointest. Endosc. 48(4), 390–394 (1998)CrossRefGoogle Scholar
  197. 197.
    T.J. Pfefer, D.Y. Paithankar, J.M. Poneros, K.T. Schomacker, N.S. Nishioka, Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus. Lasers Surg. Med. 32(1), 10–16 (2003)CrossRefGoogle Scholar
  198. 198.
    V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, T. Lotti, Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences. J. Eur. Acad. Dermatology Venereol. 23(3), 314–316 (2009)CrossRefGoogle Scholar
  199. 199.
    B.W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A.M. Raczynska, J. Winczakiewicz, J. Dobber, Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques. Lasers Surg. Med. 21(2), 149–158 (1997)CrossRefGoogle Scholar
  200. 200.
    B.W. Chwirot, Z. Michniewicz, M. Kowalska, J. Nussbeutel, Detection of colonic malignant lesions by digital imaging of UV laser-induced autofluorescence. Photochem. Photobiol. 69(3), 336–340 (1999)CrossRefGoogle Scholar
  201. 201.
    S.D. Xiao, L. Zhong, H.Y. Luo, X.Y. Chen, Y. Shi, Autofluorescence imaging analysis of gastric cancer. Chin. J. Digest. Dis. 3, 95–98 (2002)CrossRefGoogle Scholar
  202. 202.
    J. Mizeret, G. Wagnieres, T. Stepinac, H. VandenBergh, Endoscopic tissue characterization by frequency-domain fluorescence lifetime imaging (FD-FLIM). Lasers Med. Sci. 12(3), 209–217 (1997)CrossRefGoogle Scholar
  203. 203.
    J. Haringsma, G.N.J. Tytgat, Fluorescence and autofluorescence. Best Pract. Res. Clin. Gastroenterol. 13(1), 1–10 (1999)CrossRefGoogle Scholar
  204. 204.
    S. Yamashita, M. Sakabe, T. Ishizawa, K. Hasegawa, Y. Urano, N. Kokudo, Visualization of the leakage of pancreatic juice using a chymotrypsin-activated fluorescent probe. Br. J. Surg. 100(9), 1220–1228 (2013)CrossRefGoogle Scholar
  205. 205.
    R. Petry, M. Schmitt, J. Popp, Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 4(1), 14–30 (2003)CrossRefGoogle Scholar
  206. 206.
    M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E.H. Martínez-Lapiscina, I. Amat-Roldan, D. Petrov, P. Villoslada, Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis. J. Biophotonics 7(9), 724–734 (2014)CrossRefGoogle Scholar
  207. 207.
    S.K. Teh, W. Zhene, K.Y. Ho, M. Teh, K.G. Yeoh, Z.W. Huang, Near-infrared Raman spectroscopy for optical diagnosis in the stomach: identification of helicobacter-pylori infection and intestinal metaplasia. Int. J. Cancer 126(8), 1920–1927 (2010)CrossRefGoogle Scholar
  208. 208.
    H. Krishna, S.K. Majumder, P. Chaturvedi, M. Sidramesh, P.K. Gupta, In vivo Raman spectroscopy for detection of oral neoplasia: a pilot clinical study. J. Biophotonics 7(9), 690–702 (2014)CrossRefGoogle Scholar
  209. 209.
    M.S. Bergholt, K. Lin, J. Wang, W. Zheng, H. Xu, Q. Huang, J.L. Ren, K.Y. Ho, M. Teh, S. Srivastava, B. Wong, K.G. Yeoh, Z. Huang, Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J. Biophotonics 9(4), 333–342 (2016)CrossRefGoogle Scholar
  210. 210.
    M.A. Short, S. Lam, A. McWilliams, J.H. Zhao, H. Lui, H.S. Zeng, Development and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers. Opt. Lett. 33(7), 711–713 (2008)CrossRefGoogle Scholar
  211. 211.
    M.A. Short, S. Lam, A.M. McWilliams, D.N. Ionescu, H.S. Zeng, Using laser Raman spectroscopy to reduce false positives of autofluorescence bronchoscopies a pilot study. J. Thoracic Oncol. 6(7), 1206–1214 (2011)CrossRefGoogle Scholar
  212. 212.
    O. Aydin, M. Altas, M. Kahraman, O.F. Bayrak, M. Culha, Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering. Appl. Spectrosc. 63(10), 1095–1100 (2009)CrossRefGoogle Scholar
  213. 213.
    M. Saleem, M. Bilal, S. Anwar, A. Rehman, M. Ahmed, Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy. Laser Phys. Lett. 10(3), 5 (2013)CrossRefGoogle Scholar
  214. 214.
    Z. Huang, H. Zeng, I. Hamzavi, D.I. McLean, H. Lui, Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements. Opt. Lett. 26(22), 1782–1784 (2001)CrossRefGoogle Scholar
  215. 215.
    Z. Huang, S.K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K.Y. Ho, M. Teh, K.G. Yeoh, Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. Opt. Lett. 34(6), 758–760 (2009)CrossRefGoogle Scholar
  216. 216.
    Y. Komachi, H. Sato, H. Tashiro, Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease. Appl. Opt. 45(30), 7938–7943 (2006)CrossRefGoogle Scholar
  217. 217.
    W.F. Howard, W.H. Nelson, J.F. Sperry, Resonance Raman method for the rapid detection and identification of bacteria in water. Appl. Spectrosc. 34(1), 72–75 (1980)CrossRefGoogle Scholar
  218. 218.
    K. Hadjigeorgiou, E. Kastanos, A. Kyriakides, C. Pitris, Complete urinary tract infection (UTI) diagnosis and antibiogram using surface enhanced Raman spectroscopy (SERS), in Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV, vol. 8229 (2012)Google Scholar
  219. 219.
    E. Kastanos, K. Hadjigeorgiou, C. Pitris, Rapid identification of bacterial resistance to ciprofloxacin using surface enhanced Raman spectroscopy, in Optical Diagnostics and Sensing XIV: Toward Point-of-Care Diagnostics, SPIE Photonics West (SPIE, San Francisco, CA, 2014)Google Scholar
  220. 220.
    E. Kastanos, A. Kyriakides, K. Hadjigeorgiou, C. Pitris, A novel method for bacterial UTI diagnosis using Raman spectroscopy. Int. J. Spectrosc. (2012)Google Scholar
  221. 221.
    E.K. Kastanos, A. Kyriakides, K. Hadjigeorgiou, C. Pitris, A novel method for urinary tract infection diagnosis and antibiogram using Raman spectroscopy. J. Raman Spectrosc. 41(9), 958–963 (2010)CrossRefGoogle Scholar
  222. 222.
    A. Kyriakides, E. Kastanos, K. Hadjigeorgiou, C. Pitris, Classification of Raman spectra of bacteria using rank order kernels, in Advanced Biomedical and Clinical Diagnostic Systems XI, vol. 8572 (2013)Google Scholar
  223. 223.
    A. Sengupta, M.L. Laucks, E.J. Davis, Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl. Spectrosc. 59(8), 1016–1023 (2005)CrossRefGoogle Scholar
  224. 224.
    A. Sengupta, M. Mujacic, E.J. Davis, Detection of bacteria by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 386(5), 1379–1386 (2006)CrossRefGoogle Scholar
  225. 225.
    W.H. Nelson, J.F. Sperry, Direct Detection of Bacteria-Antibody Complexes Via UV Resonance Raman Spectroscopy (The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations, 2005)Google Scholar
  226. 226.
    X. Yang, C. Gu, F. Qian, Y. Li, J.Z. Zhang, Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem. 83(15), 5888–5894 (2011)CrossRefGoogle Scholar
  227. 227.
    A. Sivanesan, E. Witkowska, W. Adamkiewicz, L. Dziewit, A. Kaminska, J. Waluk, Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst 139(5), 1037–1043 (2014)CrossRefGoogle Scholar
  228. 228.
    A.K. Boardman, W.S. Wong, W.R. Premasiri, L.D. Ziegler, J.C. Lee, M. Miljkovic, C.M. Klapperich, A. Sharon, A.F. Sauer-Budge, Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal. Chem. 88(16), 8026–8035 (2016)CrossRefGoogle Scholar
  229. 229.
    M. Harz, P. Rosch, J. Popp, Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry. Part A: J. Int. Soc. Anal. Cytol. 75(2), 104–113 (2009)Google Scholar
  230. 230.
    F.S. de Siqueira e Oliveira, H.E. Giana, L. Silveira, Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis. J. Biomed. Opt. 17(10), 107004 (2012)Google Scholar
  231. 231.
    A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)CrossRefGoogle Scholar
  232. 232.
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman-spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)CrossRefGoogle Scholar
  233. 233.
    Z.A. Nima, A. Biswas, I.S. Bayer, F.D. Hardcastle, D. Perry, A. Ghosh, E. Dervishi, A.S. Biris, Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metabol. Rev. 46(2), 155–175 (2014)CrossRefGoogle Scholar
  234. 234.
    A.K. Singh, S.A. Khan, Z. Fan, T. Demeritte, D. Senapati, R. Kanchanapally, P.C. Ray, Development of a long-range surface-enhanced Raman spectroscopy ruler. J. Am. Chem. Soc. 134(20), 8662–8669 (2012)CrossRefGoogle Scholar
  235. 235.
    B. Yan, A. Thubagere, W.R. Premasiri, L.D. Ziegler, L. Dal Negro, B.M. Reinhard, Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. ACS Nano 3(5), 1190–1202 (2009)CrossRefGoogle Scholar
  236. 236.
    E. Temur, I.H. Boyaci, U. Tamer, H. Unsal, N. Aydogan, A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal. Bioanal. Chem. 397(4), 1595–1604 (2010)CrossRefGoogle Scholar
  237. 237.
    H.Y. Lin, C.H. Huang, W.H. Hsieh, L.H. Liu, Y.C. Lin, C.C. Chu, S.T. Wang, I.T. Kuo, L.K. Chau, C.Y. Yang, On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small 10(22), 4700–4710 (2014)CrossRefGoogle Scholar
  238. 238.
    C. Yuen, Q. Liu, Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: silver coated microneedle based SERS probe. J. Biophotonics 7(9), 683–689 (2014)CrossRefGoogle Scholar
  239. 239.
    Z. Fan, R. Kanchanapally, P.C. Ray, Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett. 4(21), 3813–3818 (2013)CrossRefGoogle Scholar
  240. 240.
    P.R. Stoddart, D.J. White, Optical fibre SERS sensors. Anal. Bioanal. Chem. 394(7), 1761–1774 (2009)CrossRefGoogle Scholar
  241. 241.
    G.F. Andrade, M. Fan, A.G. Brolo, Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens. Bioelectron. 25(10), 2270–2275 (2010)CrossRefGoogle Scholar
  242. 242.
    G.F.S. Andrade, J.G. Hayashi, M.M. Rahman, W.J. Salcedo, C.M.B. Cordeiro, A.G. Brolo, Surface-enhanced resonance Raman scattering (SERS) using Au nanohole arrays on optical fiber tips. Plasmonics 8(2), 1113–1121 (2013)CrossRefGoogle Scholar
  243. 243.
    F. Deiss, N. Sojic, D.J. White, P.R. Stoddart, Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal. Bioanal. Chem. 396(1), 53–71 (2010)CrossRefGoogle Scholar
  244. 244.
    Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P.J. Klar, Y. Zhang, Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber. Adv. Opt. Mater. 3(9), 1232–1239 (2015)CrossRefGoogle Scholar
  245. 245.
    J.L. Kou, M. Ding, J. Feng, Y.Q. Lu, F. Xu, G. Brambilla, Microfiber-based bragg gratings for sensing applications: a review. Sensors 12(7), 8861–8876 (2012)CrossRefGoogle Scholar
  246. 246.
    A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam, E.J. Friebele, Fiber grating sensors. J. Lightwave Technol. 15(8), 1442–1463 (1997)CrossRefGoogle Scholar
  247. 247.
    J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, N.J. Spencer, M. Costa, S.J. Brookes, M.M. Szczesniak, P.G. Dinning, A fibre optic catheter for simultaneous measurement of longitudinal and circumferential muscular activity in the gastrointestinal tract. J. Biophotonics 4(4), 244–251 (2011)CrossRefGoogle Scholar
  248. 248.
    J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, N.J. Spencer, M. Costa, S.J. Brookes, M.M. Szczesniak, P.G. Dinning, Measurement of muscular activity associated with peristalsis in the human gut using fiber Bragg grating arrays. IEEE Sensors J. 12(1), 113–117 (2012)CrossRefGoogle Scholar
  249. 249.
    M.R. Islam, M.M. Ali, M.H. Lai, K.S. Lim, H. Ahmad, Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review. Sensors (Basel) 14(4), 7451–7488 (2014)CrossRefGoogle Scholar
  250. 250.
    N. Wu, Y. Tian, X.T. Zou, Y. Zhai, K. Barringhaus, X.W. Wang, A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model. Sens. Actuators B: Chem. 181, 172–178 (2013)CrossRefGoogle Scholar
  251. 251.
    O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors. Anal. Chem. 76(12), 3269–3283 (2004)CrossRefGoogle Scholar
  252. 252.
    M.T. Carter, R.C. Thomas, M.E. Berton, Fiber waveguide chemical sensors for detection of explosive related vapors, in Detection and Remediation Technologies for Mines and Minelike Targets VII, Pts 1 and 2, vol. 4742 (2002), pp. 509–519Google Scholar
  253. 253.
    M. Janotta, A. Katzir, B. Mizaikoff, Sol-gel-coated mid-infrared fiber-optic sensors. Appl. Spectrosc. 57(7), 823–828 (2003)CrossRefGoogle Scholar
  254. 254.
    C.A. Browne, D.H. Tarrant, M.S. Olteanu, J.W. Mullens, E.L. Chronister, Intrinsic sol-gel clad fiber-optic sensors with time-resolved detection. Anal. Chem. 68(14), 2289–2295 (1996)CrossRefGoogle Scholar
  255. 255.
    G. Okeeffe, B.D. Maccraith, A.K. Mcevoy, C.M. Mcdonagh, J.F. Mcgilp, Development of a led-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilized dye. Sens. Actuators B: Chem. 29(1–3), 226–230 (1995)CrossRefGoogle Scholar
  256. 256.
    O.S. Wolfbeis, M. Schaferling, A. Durkop, Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim. Acta 143(4), 221–227 (2003)CrossRefGoogle Scholar
  257. 257.
    Y. Qin, S. Peper, A. Radu, A. Ceresa, E. Bakker, Plasticizer-free polymer containing a covalently immobilized Ca2+-selective ionophore for potentiometric and optical sensors. Anal. Chem. 75(13), 3038–3045 (2003)CrossRefGoogle Scholar
  258. 258.
    A.S. Jeevarajan, S. Vani, T.D. Taylor, M.M. Anderson, Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor. Biotechnol. Bioeng. 78(4), 467–472 (2002)CrossRefGoogle Scholar
  259. 259.
    N.A. Yusof, M. Ahmad, A flow cell optosensor for lead based on immobilized gallocynin in chitosan membrane. Talanta 58(3), 459–466 (2002)CrossRefGoogle Scholar
  260. 260.
    A. Lobnik, I. Oehme, I. Murkovic, O.S. Wolfbeis, Ph optical sensors based on sol-gels: chemical doping versus covalent immobilization. Anal. Chim. Acta 367(1–3), 159–165 (1998)CrossRefGoogle Scholar
  261. 261.
    T.M. Butler, B.D. Maccraith, C.M. Mcdonagh, Development of an extended range fibre optic ph sensor using evanescent wave absorption of sol-gel entrapped pH indicators. Chem. Biochem. Environ. Fiber Sens. VII 2508, 168–178 (1995)CrossRefGoogle Scholar
  262. 262.
    B.D. Gupta, D.K. Sharma, Evanescent wave absorption based fiber optic ph sensor prepared by dye doped sol-gel immobilization technique. Opt. Commun. 140(1–3), 32–35 (1997)CrossRefGoogle Scholar
  263. 263.
    E. Alvarado-Mendez, R. Rojas-Laguna, J.A. Andrade-Lucio, D. Hernandez-Cruz, R.A. Lessard, J.G. Avina-Cervantes, Design and characterization of pH sensor based on sol-gel silica layer on plastic optical fiber. Sens. Actuators B: Chem. 106(2), 518–522 (2005)CrossRefGoogle Scholar
  264. 264.
    B.D. Maccraith, C.M. Mcdonagh, G. Okeeffe, A.K. Mcevoy, T. Butler, F.R. Sheridan, Sol-gel coatings for optical chemical sensors and biosensors. Sens. Actuators B: Chem. 29(1–3), 51–57 (1995)CrossRefGoogle Scholar
  265. 265.
    H.P. Williams, Sir Harold Ridley’s vision. Br. J. Ophthalmol. 85(9), 1022–1023 (2001)CrossRefGoogle Scholar
  266. 266.
    M. Leyland, E. Zinicola, Multifocal versus monofocal intraocular lenses in cataract surgery: a systematic review. Ophthalmology 110(9), 1789–1798 (2003)CrossRefGoogle Scholar
  267. 267.
    S.R. de Silva, J.R. Evans, V. Kirthi, M. Ziaei, M. Leyland, Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst. Rev. 12 (2016)Google Scholar
  268. 268.
    D. Madrid-Costa, A. Cervino, T. Ferrer-Blasco, S. Garcia-Lazaro, R. Montes-Mico, Visual and optical performance with hybrid multifocal intraocular lenses. Clin. Exp. Optom. 93(6), 426–440 (2010)CrossRefGoogle Scholar
  269. 269.
    M. Chen, Accommodation in pseudophakic eyes. Taiwan J. Ophthalmol. 2(4), 117–121 (2012)CrossRefGoogle Scholar
  270. 270.
    R.F. Steinert, B.L. Aker, D.J. Trentacost, P.J. Smith, N. Tarantino, A prospective comparative study of the amo array zonal-progressive multifocal silicone intraocular lens and a monofocal intraocular lens. Ophthalmology 106(7), 1243–1255 (1999)CrossRefGoogle Scholar
  271. 271.
    M.C. Knorz, Results of a European multicenter study of the true vista bifocal intraocular lens. J. Cataract Refract. Surg. 19(5), 626–634 (1993)CrossRefGoogle Scholar
  272. 272.
    H.V. Gimbel, D.R. Sanders, M.G. Raanan, Visual and refractive results of multifocal intraocular lenses. Ophthalmology 98(6), 881–888 (1991)CrossRefGoogle Scholar
  273. 273.
    J.D. Hunkeler, T.M. Coffman, J. Paugh, A. Lang, P. Smith, N. Tarantino, Characterization of visual phenomena with the array multifocal intraocular lens. J. Cataract Refract. Surg. 28(7), 1195–1204 (2002)CrossRefGoogle Scholar
  274. 274.
    J.S. Chang, J.C. Ng, S.Y. Lau, Visual outcomes and patient satisfaction after presbyopic lens exchange with a diffractive multifocal intraocular lens. J. Refract. Surg. 28(7), 468–474 (2012)CrossRefGoogle Scholar
  275. 275.
    J.L. Alió, D.P. Piñero, A.B. Plaza-Puche, M.J.R. Chan, Visual outcomes and optical performance of a monofocal intraocular lens and a new-generation multifocal intraocular lens. J. Cataract Refract. Surg. 37(2), 241–250 (2011)CrossRefGoogle Scholar
  276. 276.
    R.K. Shepherd, M.N. Shivdasani, D.A. Nayagam, C.E. Williams, P.J. Blamey, Visual prostheses for the blind. Trends Biotechnol. 31(10), 562–571 (2013)CrossRefGoogle Scholar
  277. 277.
    S. Picaud, J.A. Sahel, Retinal prostheses: clinical results and future challenges. C.R. Biol. 337(3), 214–222 (2014)CrossRefGoogle Scholar
  278. 278.
    A.E. Hadjinicolaou, H. Meffin, M.I. Maturana, S.L. Cloherty, M.R. Ibbotson, Prosthetic vision: devices, patient outcomes and retinal research. Clin. Exper. Optometry 98(5), 395–410 (2015)CrossRefGoogle Scholar
  279. 279.
    A.H. Milam, Z.Y. Li, R.N. Fariss, Histopathology of the human retina in retinitis pigmentosa. Progr. Retinal Eye Res. 17(2), 175–205 (1998)CrossRefGoogle Scholar
  280. 280.
    M.S. Humayun, M. Prince, E. de Juan, Y. Barron, M. Moskowitz, I.B. Klock, A.H. Milam, Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 40(1), 143–148 (1999)Google Scholar
  281. 281.
    M.P. Villegas-Perez, J.M. Lawrence, M. Vidal-Sanz, M.M. Lavail, R.D. Lund, Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J. Comp. Neurol. 392(1), 58–77 (1998)CrossRefGoogle Scholar
  282. 282.
    R.E. Marc, B.W. Jones, C.B. Watt, E. Strettoi, Neural remodeling in retinal degeneration. Progr. Retinal Eye Res. 22(5), 607–655 (2003)CrossRefGoogle Scholar
  283. 283.
    G.S. Brindley, W.S. Lewin, The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196(2), 479–493 (1968)CrossRefGoogle Scholar
  284. 284.
    W.H. Dobelle, M.G. Mladejovsky, J.P. Girvin, Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183(4123), 440–444 (1974)CrossRefGoogle Scholar
  285. 285.
    Second Sight Medical Products, The Argus® II retinal prosthesis system. http://www.2-sight.com/argus-ii-rps-pr-en.html (2016)
  286. 286.
    E. Zrenner, K.U. Bartz-Schmidt, H. Benav, D. Besch, A. Bruckmann, V.P. Gabel, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, J. Koch, A. Kusnyerik, T. Peters, K. Stingl, H. Sachs, A. Stett, P. Szurman, B. Wilhelm, R. Wilke, Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Roy. Soc. B: Biol. Sci. 278(1711), 1489–1497 (2011)CrossRefGoogle Scholar
  287. 287.
    K. Stingl, K.U. Bartz-Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, U. Greppmaier, S. Hipp, G. Hortdorfer, C. Kernstock, A. Koitschev, A. Kusnyerik, H. Sachs, A. Schatz, K.T. Stingl, T. Peters, B. Wilhelm, E. Zrenner, Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. Roy. Soc. B 280(1757), 20130077 (2013)CrossRefGoogle Scholar
  288. 288.
    Retina Implant AG, Subretinal implant technology. http://www.retina-implant.de/en/patients/technology/default.aspx (2016)
  289. 289.
    Pixium Vision, Iris® bionic vision restoration system. http://www.pixium-vision.com/en/technology-1/iris-vision-restoration-system (2017)
  290. 290.
    M.S. Humayun, J.D. Dorn, L. da Cruz, G. Dagnelie, J.A. Sahel, P.E. Stanga, A.V. Cideciyan, J.L. Duncan, D. Eliott, E. Filley, A.C. Ho, A. Santos, A.B. Safran, A. Arditi, L.V. Del Priore, R.J. Greenberg, Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology 119(4), 779–788 (2012)CrossRefGoogle Scholar
  291. 291.
    S. Klauke, M. Goertz, S. Rein, D. Hoehl, U. Thomas, R. Eckhorn, F. Bremmer, T. Wachtler, Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest. Ophthalmol. Vis. Sci. 52(1), 449–455 (2011)CrossRefGoogle Scholar
  292. 292.
    A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O’Brien, Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 33(24), 5812–5820 (2012)CrossRefGoogle Scholar
  293. 293.
    H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, D. Palanker, Photovoltaic restoration of sight with high visual acuity. Nature Med. 21(5), 476–482 (2015)CrossRefGoogle Scholar
  294. 294.
    K. Mathieson, J. Loudin, G. Goetz, P. Huie, L.L. Wang, T.I. Kamins, L. Galambos, R. Smith, J.S. Harris, A. Sher, D. Palanker, Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6(6), 391–397 (2012)CrossRefGoogle Scholar
  295. 295.
    Pixium Vision, Prima bionic vision restoration system. http://www.pixium-vision.com/en/technology-1/prima-vision-restoration-system (2017)
  296. 296.
    M.N. Shivdasani, C.D. Luu, R. Cicione, J.B. Fallon, P.J. Allen, J. Leuenberger, G.J. Suaning, N.H. Lovell, R.K. Shepherd, C.E. Williams, Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J. Neural Eng. 7(3) (2010)Google Scholar
  297. 297.
    R. Cicione, M.N. Shivdasani, J.B. Fallon, C.D. Luu, P.J. Allen, G.D. Rathbone, R.K. Shepherd, C.E. Williams, Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J. Neural Eng. 9(3) (2012)Google Scholar
  298. 298.
    T. Fujikado, M. Kamei, H. Sakaguchi, H. Kanda, T. Morimoto, Y. Ikuno, K. Nishida, H. Kishima, T. Maruo, K. Konoma, M. Ozawa, K. Nishida, Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 52(7), 4726–4733 (2011)CrossRefGoogle Scholar
  299. 299.
    L.N. Ayton, P.J. Blamey, R.H. Guymer, C.D. Luu, D.A. Nayagam, N.C. Sinclair, M.N. Shivdasani, J. Yeoh, M.F. McCombe, R.J. Briggs, N.L. Opie, J. Villalobos, P.N. Dimitrov, M. Varsamidis, M.A. Petoe, C.D. McCarthy, J.G. Walker, N. Barnes, A.N. Burkitt, C.E. Williams, R.K. Shepherd, P.J. Allen, C. Bionic Vision Australia Research, First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One 9(12), e115239 (2014)Google Scholar
  300. 300.
    C. Veraart, F. Duret, M. Brelen, J. Delbeke, Vision rehabilitation with the optic nerve visual prosthesis, in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vols. 1–7, 26 (2004), pp. 4163–4164Google Scholar
  301. 301.
    M.E. Brelen, V. Vince, B. Gerard, C. Veraart, J. Delbeke, Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest. Ophthalmol. Vis. Sci. 51(10), 5351–5355 (2010)CrossRefGoogle Scholar
  302. 302.
    J.J. Sun, Y.L. Lu, P.J. Cao, X.L. Li, C.S. Cai, X.Y. Chai, Q.S. Ren, L.M. Li, Spatiotemporal properties of multipeaked electrically evoked potentials elicited by penetrative optic nerve stimulation in rabbits. Invest. Ophthalmol. Vis. Sci. 52(1), 146–154 (2011)CrossRefGoogle Scholar
  303. 303.
    R.A. Normann, B.A. Greger, P. House, S.F. Romero, F. Pelayo, E. Fernandez, Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng. 6(3) (2009)Google Scholar
  304. 304.
    E.M. Schmidt, M.J. Bak, F.T. Hambrecht, C.V. Kufta, D.K. O’Rourke, P. Vallabhanath, Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt 2), 507–522 (1996)CrossRefGoogle Scholar
  305. 305.
    P.H. Schiller, W.M. Slocum, M.C. Kwak, G.L. Kendall, E.J. Tehovnik, New methods devised specify the size and color of the spots monkeys see when striate cortex (area v1) is electrically stimulated. Proc. Natl. Acad. Sci. U.S.A. 108(43), 17809–17814 (2011)CrossRefGoogle Scholar
  306. 306.
    K. Deisseroth, Optogenetics. Nature Meth. 8(1), 26–29 (2011)CrossRefGoogle Scholar
  307. 307.
    L. Fenno, O. Yizhar, K. Deisseroth, The development and application of optogenetics, in Annual Review of Neuroscience, vol. 34, ed. by S.E. Hyman et al. (2011), pp. 389–412Google Scholar
  308. 308.
    V. Gradinaru, M. Mogri, K.R. Thompson, J.M. Henderson, K. Deisseroth, Optical deconstruction of Parkinsonian neural circuitry. Science 324(5925), 354–359 (2009)CrossRefGoogle Scholar
  309. 309.
    G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U.S.A. 100(24), 13940–13945 (2003)CrossRefGoogle Scholar
  310. 310.
    B. Schobert, J.K. Lanyi, Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257(17), 306–313 (1982)Google Scholar
  311. 311.
    B.Y. Chow, X. Han, A.S. Dobry, X.F. Qian, A.S. Chuong, M.J. Li, M.A. Henninger, G.M. Belfort, Y.X. Lin, P.E. Monahan, E.S. Boyden, High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277), 98–102 (2010)CrossRefGoogle Scholar
  312. 312.
    E.S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8(9), 1263–1268 (2005)CrossRefGoogle Scholar
  313. 313.
    B. Fan, W. Li, Miniaturized optogenetic neural implants: a review. Lab Chip 15(19), 3838–3855 (2015)CrossRefGoogle Scholar
  314. 314.
    J.M. Barrett, R. Berlinguer-Palmini, P. Degenaar, Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31(4–5), 345–354 (2014)CrossRefGoogle Scholar
  315. 315.
    B.R. Arenkiel, J. Peca, I.G. Davison, C. Feliciano, K. Deisseroth, G.J. Augustine, M.D. Ehlers, G.P. Feng, In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2), 205–218 (2007)CrossRefGoogle Scholar
  316. 316.
    S.L. Zhao, C. Cunha, F. Zhang, Q. Liu, B. Gloss, K. Deisseroth, G.J. Augustine, G.P. Feng, Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36(1–4), 141–154 (2008)CrossRefGoogle Scholar
  317. 317.
    F. Zhang, V. Gradinaru, A.R. Adamantidis, R. Durand, R.D. Airan, L. de Lecea, K. Deisseroth, Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5(3), 439–456 (2010)CrossRefGoogle Scholar
  318. 318.
    K.M. Tye, J.J. Mirzabekov, M.R. Warden, E.A. Ferenczi, H.-C. Tsai, J. Finkelstein, S.-Y. Kim, A. Adhikari, K.R. Thompson, A.S. Andalman, L.A. Gunaydin, I.B. Witten, K. Deisseroth, Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493(7433), 537 (2013)CrossRefGoogle Scholar
  319. 319.
    K.M. Tye, R. Prakash, S.-Y. Kim, L.E. Fenno, L. Grosenick, H. Zarabi, K.R. Thompson, V. Gradinaru, C. Ramakrishnan, K. Deisseroth, Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471(7338), 358–362 (2011)CrossRefGoogle Scholar
  320. 320.
    D. Chaudhury, J.J. Walsh, A.K. Friedman, B. Juarez, S.M. Ku, J.W. Koo, D. Ferguson, H.-C. Tsai, L. Pomeranz, D.J. Christoffel, A.R. Nectow, M. Ekstrand, A. Domingos, M.S. Mazei-Robison, E. Mouzon, M.K. Lobo, R.L. Neve, J.M. Friedman, S.J. Russo, K. Deisseroth, E.J. Nestler, M.-H. Han, Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493(7433), 532 (2013)CrossRefGoogle Scholar
  321. 321.
    A.M. Aravanis, L.P. Wang, F. Zhang, L.A. Meltzer, M.Z. Mogri, M.B. Schneider, K. Deisseroth, An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4(3), S143–S156 (2007)CrossRefGoogle Scholar
  322. 322.
    Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschenes, R. Vallee, Y. De Koninck, A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nature Meth. 8(4), 319–325 (2011)CrossRefGoogle Scholar
  323. 323.
    J. Wang, F. Wagner, D.A. Borton, J.Y. Zhang, I. Ozden, R.D. Burwell, A.V. Nurmikko, R. van Wagenen, I. Diester, K. Deisseroth, Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9(1) (2012)Google Scholar
  324. 324.
    N. Grossman, V. Poher, M.S. Grubb, G.T. Kennedy, K. Nikolic, B. McGovern, R.B. Palmini, Z. Gong, E.M. Drakakis, M.A.A. Neil, M.D. Dawson, J. Burrone, P. Degenaar, Multi-site optical excitation using chr2 and micro-led array. J. Neural Eng. 7(1) (2010)Google Scholar
  325. 325.
    K.Y. Kwon, B. Sirowatka, A. Weber, W. Li, Opto-mu ecog array: a hybrid neural interface with transparent mu ecog electrode array and integrated leds for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7(5), 593–600 (2013)CrossRefGoogle Scholar
  326. 326.
    M. Schwaerzle, P. Elmlinger, O. Paul, P. Ruther, Miniaturized 3 × 3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection, in 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2015)Google Scholar
  327. 327.
    R.D. Airan, K.R. Thompson, L.E. Fenno, H. Bernstein, K. Deisseroth, Temporally precise in vivo control of intracellular signalling. Nature 458(7241), 1025–1029 (2009)CrossRefGoogle Scholar
  328. 328.
    J.A. Cardin, M. Carlen, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth, L.H. Tsai, C.I. Moore, Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat. Protoc. 5(2), 247–254 (2010)CrossRefGoogle Scholar
  329. 329.
    P. Anikeeva, A.S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L.A. Gunaydin, L.M. Frank, K. Deisseroth, Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nature Neurosci. 15(1), 163–170 (2012)CrossRefGoogle Scholar
  330. 330.
    E. Stark, T. Koos, G. Buzsaki, Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108(1), 349–363 (2012)CrossRefGoogle Scholar
  331. 331.
    T.V.F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G.A. Clark, F. Solzbacher, Characterization of a 3D optrode array for infrared neural stimulation. Biomed. Opt. Express 3(9), 2200–2219 (2012)CrossRefGoogle Scholar
  332. 332.
    Y. Iwai, S. Honda, H. Ozeki, M. Hashimoto, H. Hirase, A simple head-mountable led device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70(1), 124–127 (2011)CrossRefGoogle Scholar
  333. 333.
    L. Campagnola, H. Wang, M.J. Zyka, Fiber-coupled light-emitting diode for localized photo stimulation of neurons expressing channelrhodopsin-2. J. Neurosci. Meth. 169(1), 27–33 (2008)CrossRefGoogle Scholar
  334. 334.
    T. Ishizuka, M. Kakuda, R. Araki, H. Yawo, Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54(2), 85–94 (2006)CrossRefGoogle Scholar
  335. 335.
    H. Cao, L. Gu, S.K. Mohanty, J.C. Chiao, An integrated µLED optrode for optogenetic stimulation and electrical recording. IEEE Trans. Biomed. Eng. 60(1), 225–229 (2013)CrossRefGoogle Scholar
  336. 336.
    N. McAlinden, D. Massoubre, E. Richardson, E. Gu, S. Sakata, M.D. Dawson, K. Mathieson, Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt. Lett. 38(6), 992–994 (2013)CrossRefGoogle Scholar
  337. 337.
    K.Y. Kwon, H.M. Lee, M. Ghovanloo, A. Weber, W. Li, Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 9, 69 (2015)CrossRefGoogle Scholar
  338. 338.
    H.M. Lee, K.Y. Kwon, W. Li, M. Ghovanloo, A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE J. Solid-State Circ. 50(1), 360–374 (2015)CrossRefGoogle Scholar
  339. 339.
    M.A. Rossi, V. Go, T. Murphy, Q. Fu, J. Morizio, H.H. Yin, A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front. Integr. Neurosci. 9, 8 (2015)Google Scholar
  340. 340.
    M. Hashimoto, A. Hata, T. Miyata, H. Hirase, Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics 1(1), 011002 (2014)CrossRefGoogle Scholar
  341. 341.
    S.T. Lee, P.A. Williams, C.E. Braine, D.T. Lin, S.W. John, P.P. Irazoqui, A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator. IEEE Trans. Neural Syst. Rehabil. Eng. 23(4), 655–664 (2015)CrossRefGoogle Scholar
  342. 342.
    C.T. Wentz, J.G. Bernstein, P. Monahan, A. Guerra, A. Rodriguez, E.S. Boyden, A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8(4) (2011)Google Scholar
  343. 343.
    T.-I. Kim, J.G. McCall, Y.H. Jung, X. Huang, E.R. Siuda, Y. Li, J. Song, Y.M. Song, H.A. Pao, R.-H. Kim, C. Lu, S.D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M.P. Tan, Y. Huang, F.G. Omenetto, J.A. Rogers, M.R. Bruchas, Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129), 211–216 (2013)CrossRefGoogle Scholar
  344. 344.
    S.I. Park, D.S. Brenner, G. Shin, C.D. Morgan, B.A. Copits, H.U. Chung, M.Y. Pullen, K.N. Noh, S. Davidson, S.J. Oh, J. Yoon, K.-I. Jang, V.K. Samineni, M. Norman, J.G. Grajales-Reyes, S.K. Vogt, S.S. Sundaram, K.M. Wilson, J.S. Ha, R. Xu, T. Pan, T.-I. Kim, Y. Huang, M.C. Montana, J.P. Golden, M.R. Bruchas, R.W. Gereau Iv, J.A. Rogers, Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotech. (Advance online publication, 2015)Google Scholar
  345. 345.
    A.D. Bi, J.J. Cui, Y.P. Ma, E. Olshevskaya, M.L. Pu, A.M. Dizhoor, Z.H. Pan, Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1), 23–33 (2006)CrossRefGoogle Scholar
  346. 346.
    H. Tomita, E. Sugano, H. Isago, T. Hiroi, Z. Wang, E. Ohta, M. Tamai, Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exper. Eye Res. 90(3), 429–436 (2010)CrossRefGoogle Scholar
  347. 347.
    H. Tomita, E. Sugano, H. Yawo, T. Ishizuka, H. Isago, S. Narikawa, S. Kugler, M. Tamai, Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest. Ophthalmol. Vis. Sci. 48(8), 3821–3826 (2007)CrossRefGoogle Scholar
  348. 348.
    P.S. Lagali, D. Balya, G.B. Awatramani, T.A. Munch, D.S. Kim, V. Busskamp, C.L. Cepko, B. Roska, Light-activated channels targeted to on bipolar cells restore visual function in retinal degeneration. Nature Neurosci. 11(6), 667–675 (2008)CrossRefGoogle Scholar
  349. 349.
    B. Lin, A. Koizumi, N. Tanaka, S. Panda, R.H. Masland, Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. U.S.A. 105(41), 16009–16014 (2008)CrossRefGoogle Scholar
  350. 350.
    I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, S. Shoham, Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4 (2013)Google Scholar
  351. 351.
    B. McGovern, R.B. Palmini, N. Grossman, E.M. Drakakis, V. Poher, M.A.A. Neil, P. Degenaar, A new individually addressable micro-LED array for photogenetic neural stimulation. IEEE Trans. Biomed. Circ. Syst. 4(6), 469–476 (2010)CrossRefGoogle Scholar
  352. 352.
    L. Chaudet, M. Neil, P. Degenaar, K. Mehran, R. Berlinguer-Palmini, B. Corbet, P. Maaskant, D. Rogerson, P. Lanigan, E. Bamberg, B. Roska, Development of optics with micro-LED arrays for improved opto-electronic neural stimulation. Optogenetics: Opt. Meth. Cell. Control 8586 (2013)Google Scholar
  353. 353.
    J.T. DiPiro, R.G. Martindale, A. Bakst, P.F. Vacani, P. Watson, M.T. Miller, Infection in surgical patients: effects on mortality, hospitalization, and postdischarge care. Am. J. Health-System Pharmacy 55(8), 777–781 (1998)Google Scholar
  354. 354.
    C.D. Owens, K. Stoessel, Surgical site infections: epidemiology, microbiology and prevention. J. Hosp. Infect. 70(Suppl 2), 3–10 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Hamlyn CentreImperial College LondonLondonUK

Personalised recommendations