Ultra-Low Power Application-Specific Integrated Circuits for Sensing

Chapter

Abstract

In the quest for ever-reducing system size and increased integration and functionality, application-specific integrated circuit (ASIC) technology plays a pivotal role in modern implants, where custom circuits designed at transistor and device levels are replacing off-the-shelf commercial chips and bulky benchtop systems. Recently, commercial system-on-chip (SoC) devices encompassing digital microcontrollers, radio, and analog–digital converters, as well as reconfigurable amplifier circuits, are widely available. Despite this, further development of ASIC-specific implantable systems is required, particularly in the area of multi-channel array sensor interfaces, ultra-low power data acquisition, and circuits that work with specialized micro-sensors for implants. ASICs designed to focus on a particular application have given designers the freedom to optimize power consumption for a set task, unlike general-purpose SoCs that have to cater for a wide range of applications and hence typically consume more power. In this chapter, we begin with a survey on the latest development of ASICs and related integrated systems from literature. This is followed by an overview of technological trends in integrated circuit/sensor fabrication and fusion. The rest of the chapter focuses on a number of engineering aspects related to ultra-low power ASIC circuits appropriate for implantable sensors and sensor front-ends, covering bioimpedance, neural and electrochemical sensor measurement circuits, as well as low-power analog-to-digital converter design and architectures.

List of Acronyms

AAP

Axon action potentials

AC

Alternating current

ACFB

Autocorrelation feedback

ADC

Analog-to-digital converter

AGC

Automatic gain control

APS

Active pixel sensors

ASIC

Application specific integrated circuit

AZ

Auto-zeroing

BIST

Built-in self-test

BJT

Bipolar junction transistor

BPF

Bandpass filter

CDS

Correlated double sampling

CHS

Chopper stabilization

CMFB

Common-mode feedback

CMOS

Complementary metal-oxide semiconductor

CMRR

Common-mode rejection ratio

CMS

Correlated multiple sampling

CNS

Central nervous systems

CORDIC

Coordinate rotation digital computer

CS

Compressed sensing

CTAT

Complementary-to-absolute-temperature

CT ΔΣ

Continuous-time ΔΣ-modulator

CV

Cyclic voltammetry

DAC

Digital-to-analog converter

DBS

Deep brain stimulation

DC

Direct current

DDA

Differential difference amplifier

DDS

Direct digital synthesizer

DNA

Deoxyribonucleic acid

DSP

Digital signal processing

DT ΔΣ

Discrete-time ΔΣ-modulator

ECoG

Electrocorticography

ECG

Electrocardiography

EEG

Electroencephalography

EIT

Electrical impedance tomography

EMG

Electromyography

EMI

Electromagnetic interference

ENG

Electroneurography

EOG

Electrooculography

ESD

Electrostatic discharge

FBVA

Feedback voltage attenuation

FET

Field-effect transistor

FFCA

Feedforward current attenuation

FFVA

Feedforward voltage attenuation

FGMOS

Floating gate MOS

FIR

Finite impulse response

FPAA

Field-programmable analog array

FPGA

Field-programmable gated array

FS

Frequency span

FSCV

Fast scan cyclic voltammetry

FSK

Frequency shift keying

HD3

Third order harmonic distortion

HPF

High-pass filter

IA

Instrumentation amplifier

IC

Inversion coefficient

IF-ADC

Integrate and fire ADC

IIR

Infinite impulse response

KCL

Kirchhoff’s current law

LFP

Local field potential

LNA

Low noise amplifier

LPF

Low-pass filter

LSB

Least significant bit

LUT

Lookup table

MEMS

Micro-electro-mechanical system

MOSFET

Metal-oxide field effect transistor

MSB

Most significant bit

NEF

Noise efficiency factor

OOS

Output offset storage

OSR

Oversampling ratio

op-amp

Operational amplifier

OTA

Operational transconductance amplifier

PEF

Power efficiency factor

PGA

Programmable gain amplifier

PND

P+ non-salicide diffusion

PNS

Peripheral nervous systems

PSD

Power spectral density

PSRR

Power supply rejection ratio

PTAT

Positive-to-absolute-temperature

PWV

Pulse wave velocity

Q

Quality factor

RMS

Root-mean-square

ROM

Read-only memory

S

Slope

SAR

Successive approximation register

SC

Switched capacitor

SCCMOS

Super cutoff CMOS

SD

Synchronous detection

SFDR

Spurious-free dynamic range

SNR

Signal to noise ratio

SoC

System-on-chip

TC

Temperature coefficient

TCN

Negative temperature coefficient

TCP

Positive temperature coefficient

TDC

Time-to-digital converter

TEM

Time-encoding machine

THD

Total harmonic distortion

TI

Transimpedance

TIA

Transimpedance amplifier

TSC

Triangle-to-sine converter

TSV

Through-silicon-vias

VCCS

Voltage-controlled current source

VFC

Voltage-to-frequency converter

VVR

Voltage variable resistor

References

  1. 1.
    C.M. Lopez et al., An implantable 455-active-Electrode 52-channel CMOS neural probe. IEEE J. Solid-State Circuits 49(1), 248–261 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Yin, D.A. Borton, J. Aceros, W.R. Patterson, A.V. Nurmikko, A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 115–128 (2013)CrossRefGoogle Scholar
  3. 3.
    P.T. Huang et al., 2.5D heterogeneously integrated microsystem for high-density neural sensing applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 810–823 (2014)CrossRefGoogle Scholar
  4. 4.
    E.E. Aktakka, K. Najafi, A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J. Solid-State Circuits 49(9), 2017–2029 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Bakhshiani, M.A. Suster, P. Mohseni, A broadband sensor interface IC for miniaturized dielectric spectroscopy from MHz to GHz. IEEE J. Solid-State Circuits 49(8), 1669–1681 (2014)CrossRefGoogle Scholar
  6. 6.
    S.S. Ghoreishizadeh, C. Baj-Rossi, A. Cavallini, S. Carrara, G.D. Micheli, An integrated control and readout circuit for implantable multi-target electrochemical biosensing. IEEE Trans. Biomed. Circuits Syst. 8(6), 891–898 (2014)CrossRefGoogle Scholar
  7. 7.
    Y.J. Huang et al., A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications. IEEE J. Solid-State Circuits 49(4), 851–866 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Suo, J. Zhang, T. Xiong, P.S. Chin, R. Etienne-Cummings, T.D. Tran, Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(5), 648–659 (2014)CrossRefGoogle Scholar
  10. 10.
    H.G. Rhew, J. Jeong, J.A. Fredenburg, S. Dodani, P.G. Patil, M.P. Flynn, a fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J. Solid-State Circuits 49(10), 2213–2227 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.J. Huang et al., A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection. IEEE Trans. Biomed. Circuits Syst. 7(6), 820–831 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Huang, Y. Liu, B.L. Hassler, R.M. Worden, A.J. Mason, A protein-based electrochemical biosensor array platform for integrated microsystems. IEEE Trans. Biomed. Circuits Syst. 7(1), 43–51 (2013)CrossRefGoogle Scholar
  13. 13.
    S.W. Chiu et al., A fully integrated nose-on-a-chip for rapid diagnosis of ventilator-associated pneumonia. IEEE Trans. Biomed. Circuits Syst. 8(6), 765–778 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Haruta et al., An implantable CMOS device for blood-flow imaging during experiments on freely moving rats. Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014)Google Scholar
  15. 15.
    T.H. Tsai, H.C. Tsai, T.K. Wu, A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations. IEEE Trans. Biomed. Circuits Syst. 8(5), 608–616 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Yip, R. Jin, H.H. Nakajima, K.M. Stankovic, A.P. Chandrakasan, A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J. Solid-State Circuits 50(1), 214–229 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.K. Lo, K. Chen, P. Gad, W. Liu, A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses. IEEE Trans. Biomed. Circuits Syst. 7(6), 761–772 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Monge et al., A fully intraocular high-density self-calibrating epiretinal prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(6), 747–760 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Oh et al., Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse. IEEE Trans. Biomed. Eng. 62(1), 70–79 (2015)CrossRefGoogle Scholar
  20. 20.
    R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)CrossRefGoogle Scholar
  21. 21.
    B. Gosselin, M. Sawan, C.A. Chapman, A low-power integrated bioamplifier with active low-frequency suppression. IEEE Trans. Biomed. Circuits Syst. 1(3), 184–192 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Bagheri, M.T. Salam, J.L.P. Velazquez, R. Genov, Low-frequency noise and offset rejection in DC-coupled neural amplifiers: a review and digitally-assisted design tutorial. IEEE Trans. Biomed. Circuits Syst. 11(1), 161–176 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Liu, A. Demosthenous, N. Donaldson, Platinum electrode noise in the ENG spectrum. Med. Biol. Eng. Comput. 46(10), 997–1003 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Kassiri, K. Abdelhalim, R. Genov, Low-distortion super-GOhm subthreshold-MOS resistors for CMOS neural amplifiers, in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS) (2013), pp. 270–273Google Scholar
  25. 25.
    R.F. Yazicioglu, P. Merken, R. Puers, C.V. Hoof, A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits 42(5), 1100–1110 (2007)CrossRefGoogle Scholar
  26. 26.
    X. Zou, X. Xu, L. Yao, Y. Lian, A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J. Solid-State Circuits 44(4), 1067–1077 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Tseng, Y. Ho, S. Kao, C. Su, A 0.09 μW low power front-end biopotential amplifier for biosignal recording. IEEE Trans. Biomed. Circuits Syst. 6(5), 508–516 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Demosthenous, I. Pachnis, D. Jiang, N. Donaldson, An integrated amplifier with passive neutralization of myoelectric interference from neural recording tripoles. IEEE Sens. J. 13(9), 3236–3248 (2013)CrossRefGoogle Scholar
  29. 29.
    L. Yan, J. Bae, S. Lee, T. Roh, K. Song, H.J. Yoo, A 3.9 mW 25-electrode reconfigured sensor for wearable cardiac monitoring system. IEEE J. Solid-State Circuits 46(1), 353–364 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Hong et al., A 4.9 mOhm-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system. IEEE J. Solid-State Circuits 50(1), 245–257 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Hong, J. Lee, J. Bae, H.J. Yoo, A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system. IEEE J. Solid-State Circuits 50(11), 2501–2512 (2015)CrossRefGoogle Scholar
  32. 32.
    R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C.V. Hoof, A 30 μW analog signal processor asic for portable biopotential signal monitoring. IEEE J. Solid-State Circuits 46(1), 209–223 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Demosthenous, Advances in microelectronics for implantable medical devices. Adv. Electron. 981295 (2014)Google Scholar
  34. 34.
    H. Chandrakumar D. Marković, A high dynamic-range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE J. Solid-State Circuits 52(3), 645–656 (2017)Google Scholar
  35. 35.
    N.V. Helleputte, S. Kim, H. Kim, J.P. Kim, C.V. Hoof, R.F. Yazicioglu, A 160μA biopotential acquisition ic with fully integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)Google Scholar
  36. 36.
    M.S.J. Steyaert, W.M.C. Sansen, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits 22(6), 1163–1168 (1987)CrossRefGoogle Scholar
  37. 37.
    F. Zhang, J. Holleman, B.P. Otis, Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans. Biomed. Circuits Syst. 6(4), 344–355 (2012)CrossRefGoogle Scholar
  38. 38.
    K.A. Ng, E. Greenwald, Y.P. Xu, N.V. Thakor, Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med. Biol. Eng. Comput. 54(1), 45–62 (2016)CrossRefGoogle Scholar
  39. 39.
    W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1(2), 136–147 (2007)CrossRefGoogle Scholar
  40. 40.
    T. Delbruck and C. A. Mead, Adaptive photoreceptor with wide dynamic range, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS ’94) (1994), pp. 339–342Google Scholar
  41. 41.
    Z. Kárász, R. Fiáth, P. Földesy, Á.R. Vázquez, Tunable low noise amplifier implementation with low distortion pseudo-resistance for in vivo brain activity measurement. IEEE Sens. J. 14(5), 1357–1363 (2014)CrossRefGoogle Scholar
  42. 42.
    R.H. Olsson, D.L. Buhl, A.M. Sirota, G. Buzsaki, K.D. Wise, Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans. Biomed. Eng. 52(7), 1303–1311 (2005)CrossRefGoogle Scholar
  43. 43.
    M. Yin, M. Ghovanloo, A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications, in 2007 IEEE International Symposium on Circuits and Systems (2007), pp. 321–324Google Scholar
  44. 44.
    H. Rezaee-Dehsorkh, N. Ravanshad, R. Lotfi, K. Mafinezhad, A.M. Sodagar, Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE. J. Emerg. Sel. Top. Circuits Syst. 1(4), 546–556 (2011)CrossRefGoogle Scholar
  45. 45.
    R.H. Olsson, K.D. Wise, A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J. Solid-State Circuits 40(12), 2796–2804 (2005)CrossRefGoogle Scholar
  46. 46.
    K. Abdelhalim, L. Kokarovtseva, J.L.P. Velazquez, R. Genov, 915-MHz FSK/OOK wireless neural recording SoC With 64 mixed-signal FIR filters. IEEE J. Solid-State Circuits 48(10), 2478–2493 (2013)CrossRefGoogle Scholar
  47. 47.
    N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid-State Circuits 45(4), 804–816 (2010)CrossRefGoogle Scholar
  48. 48.
    K.A. Ng, Y.P. Xu, A compact, low input capacitance neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 7(5), 610–620 (2013)CrossRefGoogle Scholar
  49. 49.
    V. Majidzadeh, A. Schmid, Y. Leblebici, Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 5(3), 262–271 (2011)CrossRefGoogle Scholar
  50. 50.
    Z. Zhou, P.A. Warr, A high input impedance low noise integrated front-end amplifier for neural monitoring. IEEE Trans. Biomed. Circuits Syst. 10(6), 1079–1086 (2016)CrossRefGoogle Scholar
  51. 51.
    K.A. Ng, Y.P. Xu, A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs With CMFB through supply rails. IEEE J. Solid-State Circuits 51(3), 724–737 (2016)CrossRefGoogle Scholar
  52. 52.
    R. Muller, S. Gambini, J.M. Rabaey, A 0.013 mm2, 5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid-State Circuits 47(1), 232–243 (2012)CrossRefGoogle Scholar
  53. 53.
    W. Biederman et al., A fully-integrated, miniaturized (0.125 mm2) 10.5 μW wireless neural sensor. IEEE J. Solid-State Circuits 48(4), 960–970 (2013)CrossRefGoogle Scholar
  54. 54.
    A.P. Brokaw, M.P. Timko, An improved monolithic instrumentation amplifier. IEEE J. Solid-State Circuits 10(6), 417–423 (1975)CrossRefGoogle Scholar
  55. 55.
    R. Martins, S. Selberherr, F.A. Vaz, A CMOS IC for portable EEG acquisition systems. IEEE Trans. Instrum. Meas. 47(5), 1191–1196 (1998)CrossRefGoogle Scholar
  56. 56.
    A. Worapishet, A. Demosthenous, X. Liu, A CMOS instrumentation amplifier with 90-dB CMRR at 2-MHz using capacitive neutralization: analysis, design considerations, and implementation. IEEE Trans. Circuits Syst. Regul. Pap. 58(4), 699–710 (2011)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Y.-Q. Zhao, A. Demosthenous, R.H. Bayford, A CMOS instrumentation amplifier for wideband bioimpedance spectroscopy systems, in 2006 IEEE International Symposium on Circuits and Systems (2006), p. 5082Google Scholar
  58. 58.
    P. Kassanos, I.F. Triantis, A. Demosthenous, A CMOS magnitude/phase measurement chip for impedance spectroscopy. IEEE Sens. J. 13(6), 2229–2236 (2013)CrossRefGoogle Scholar
  59. 59.
    P. Kassanos, L. Constantinou, I.F. Triantis, A. Demosthenous, An integrated analog readout for multi-frequency bioimpedance measurements. IEEE Sens. J. 14(8), 2792–2800 (2014)CrossRefGoogle Scholar
  60. 60.
    A. Yufera, A. Rueda, J.M. Munoz, R. Doldan, G. Leger, E.O. Rodriguez-Villegas, A tissue impedance measurement chip for myocardial ischemia detection. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2620–2628 (2005)CrossRefGoogle Scholar
  61. 61.
    K. Song, U. Ha, S. Park, J. Bae, H.J. Yoo, An impedance and multi-wavelength near-infrared spectroscopy IC for non-invasive blood glucose estimation. IEEE J. Solid-State Circuits 50(4), 1025–1037 (2015)CrossRefGoogle Scholar
  62. 62.
    R.F. Yazicioglu, P. Merken, R. Puers, C.V. Hoof, A 200 μW eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid-State Circuits 43(12), 3025–3038 (2008)CrossRefGoogle Scholar
  63. 63.
    K. Song, U. Ha, J. Lee, K. Bong, H.J. Yoo, An 87-mA.min iontophoresis controller IC with dual-mode impedance sensor for patch-type transdermal drug delivery system. IEEE J. Solid-State Circuits 49(1), 167–178 (2014)CrossRefGoogle Scholar
  64. 64.
    J. Xu, B. Büsze, C.V. Hoof, K.A.A. Makinwa, R.F. Yazicioglu, A 15-channel digital active electrode system for multi-parameter biopotential measurement. IEEE J. Solid-State Circuits 50(9), 2090–2100 (2015)CrossRefGoogle Scholar
  65. 65.
    E. Sackinger, W. Guggenbuhl, A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid-State Circuits 22(2), 287–294 (1987)CrossRefGoogle Scholar
  66. 66.
    K.A. Ng, P.K. Chan, A CMOS analog front-end IC for portable EEG/ECG monitoring applications. IEEE Trans. Circuits Syst. Regul. Pap. 52(11), 2335–2347 (2005)CrossRefGoogle Scholar
  67. 67.
    M. Guermandi, R. Cardu, E.F. Scarselli, R. Guerrieri, Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance. IEEE Trans. Biomed. Circuits Syst. 9(1), 21–33 (2015)CrossRefGoogle Scholar
  68. 68.
    H. Ko, T. Lee, J. H. Kim, J. Park, J.P. Kim, Ultralow-power bioimpedance IC with intermediate frequency shifting chopper. IEEE Trans. Circuits Syst. II Express Briefs 63(3), 259–263 (2016)Google Scholar
  69. 69.
    J. Kim, H. Ko, Reconfigurable multiparameter biosignal acquisition SoC for low power wearable platform. Sensors 16(12), 2002 (2016)CrossRefGoogle Scholar
  70. 70.
    J. Wu, G.K. Fedder, L.R. Carley, A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Solid-State Circuits 39(5), 722–730 (2004)CrossRefGoogle Scholar
  71. 71.
    H. Alzaher, M. Ismail, A CMOS fully balanced differential difference amplifier and its applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48(6), 614–620 (2001)CrossRefGoogle Scholar
  72. 72.
    P.K. Chan, J. Cui, Design of chopper-stabilized amplifiers with reduced offset for sensor applications. IEEE Sens. J. 8(12), 1968–1980 (2008)CrossRefGoogle Scholar
  73. 73.
    J.F. Duque-Carrillo, G. Torelli, R. Perez-Aloe, J.M. Valverde, F. Maloberti, Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 42(3), 190–192 (1995)CrossRefGoogle Scholar
  74. 74.
    F. Witte, K.A.A. Makinwa, J. Huijsing, Dynamic Offset Compensated CMOS Amplifiers (Springer Science & Business Media, Berlin, 2009)Google Scholar
  75. 75.
    M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)CrossRefGoogle Scholar
  76. 76.
    P.R. Kinget, Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid-State Circuits 40(6), 1212–1224 (2005)CrossRefGoogle Scholar
  77. 77.
    C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)CrossRefGoogle Scholar
  78. 78.
    A. Agnes, A. Cabrini, F. Maloberti, G. Martini, Cancellation of amplifier offset and 1/f noise: an improved chopper stabilized technique. IEEE Trans. Circuits Syst. II Express Briefs 54(6), 469–473 (2007)CrossRefGoogle Scholar
  79. 79.
    M.A.T. Sanduleanu, A.J.M.V. Tuijl, R.F. Wassenaar, M.C. Lammers, H. Wallinga, A low noise, low residual offset, chopped amplifier for mixed level applications, in 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196) (1998), pp. 333–336Google Scholar
  80. 80.
    H.M. Jafari, R. Genov, Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans. Circuits Syst. Regul. Pap. 60(5), 1149–1157 (2013)MathSciNetCrossRefGoogle Scholar
  81. 81.
    H.M. Jafari, K. Abdelhalim, L. Soleymani, E.H. Sargent, S.O. Kelley, R. Genov, Nanostructured CMOS wireless ultra-wideband label-free PCR-free DNA analysis SoC. IEEE J. Solid-State Circuits 49(5), 1223–1241 (2014)CrossRefGoogle Scholar
  82. 82.
    J. Xu, R.F. Yazicioglu, B. Grundlehner, P. Harpe, K.A.A. Makinwa, C.V. Hoof, A 160 μW 8-channel active electrode system for EEG monitoring. IEEE Trans. Biomed. Circuits Syst. 5(6), 555–567 (2011)CrossRefGoogle Scholar
  83. 83.
    Y. Hu, M. Sawan, CMOS front-end amplifier dedicated to monitor very low amplitude signal from implantable sensors. Analog Integr. Circuits Signal Process. 33(1), 29–41 (2002)CrossRefGoogle Scholar
  84. 84.
    R. Chebli, M. Sawan, Low noise and high CMRR front-end amplifier dedicated to portable EEG acquisition system, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013), pp. 2523–2526Google Scholar
  85. 85.
    C. Enz, A. Boukhayma, Recent trends in low-frequency noise reduction techniques for integrated circuits, in 2015 International Conference on Noise and Fluctuations (ICNF) (2015), pp. 1–6Google Scholar
  86. 86.
    C. Menolfi, Q. Huang, A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J. Solid-State Circuits 32(7), 968–976 (1997)CrossRefGoogle Scholar
  87. 87.
    C.C. Enz, E.A. Vittoz, F. Krummenacher, A CMOS chopper amplifier. IEEE J. Solid-State Circuits 22(3), 335–342 (1987)CrossRefGoogle Scholar
  88. 88.
    C. Menolfi, Q. Huang, A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE J. Solid-State Circuits 34(3), 415–420 (1999)CrossRefGoogle Scholar
  89. 89.
    A. Bakker, K. Thiele, J.H. Huijsing, A CMOS nested-chopper instrumentation amplifier with 100-nV offset. IEEE J. Solid-State Circuits 35(12), 1877–1883 (2000)CrossRefGoogle Scholar
  90. 90.
    J. Xu, Q. Fan, J.H. Huijsing, C.V. Hoof, R.F. Yazicioglu, K.A.A. Makinwa, Measurement and analysis of current noise in chopper amplifiers. IEEE J. Solid-State Circuits 48(7), 1575–1584 (2013)CrossRefGoogle Scholar
  91. 91.
    M.A.P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5 ℃ from –50 ℃ to 120 ℃. IEEE J. Solid-State Circuits 40(2), 454–461 (2005)Google Scholar
  92. 92.
    R. Wu, K.A.A. Makinwa, J.H. Huijsing, A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz Noise Corner and an AC-Coupled Ripple Reduction Loop. IEEE J. Solid-State Circuits 44(12), 3232–3243 (2009)CrossRefGoogle Scholar
  93. 93.
    A. Bakker, J.H. Huijsing, A CMOS chopper opamp with integrated low-pass filter, in Proceedings of the 23rd European Solid-State Circuits Conference (1997), pp. 200–203Google Scholar
  94. 94.
    R. Burt, J. Zhang, A Micropower Chopper-Stabilized Operational Amplifier Using a SC Notch Filter With Synchronous Integration Inside the Continuous-Time Signal Path. IEEE J. Solid-State Circuits 41(12), 2729–2736 (2006)CrossRefGoogle Scholar
  95. 95.
    Q. Fan, F. Sebastiano, J.H. Huijsing, K.A.A. Makinwa, A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J. Solid-State Circuits 46(7), 1534–1543 (2011)Google Scholar
  96. 96.
    Y. Kusuda, Auto correction feedback for ripple suppression in a chopper amplifier. IEEE J. Solid-State Circuits 45(8), 1436–1445 (2010)CrossRefGoogle Scholar
  97. 97.
    H. Chandrakumar, D. Marković, A simple area-efficient ripple-rejection technique for chopped biosignal amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 62(2), 189–193 (2015)CrossRefGoogle Scholar
  98. 98.
    T. Denison, K. Consoer, W. Santa, A.T. Avestruz, J. Cooley, A. Kelly, A 2 μW 100 nV/√Hz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid-State Circuits 42(12), 2934–2945 (2007)Google Scholar
  99. 99.
    P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-Bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid-State Circuits 44(12), 3631–3644 (2009)CrossRefGoogle Scholar
  100. 100.
    C.-G. Yu, R.L. Geiger, An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers. IEEE J. Solid-State Circuits 29(5), 601–610 (1994)CrossRefGoogle Scholar
  101. 101.
    N. Yazdi, H. Kulah, K. Najafi, Precision readout circuits for capacitive microaccelerometers, in Proceedings of IEEE Sensors (2004), pp. 28–31Google Scholar
  102. 102.
    W. Bracke, P. Merken, R. Puers, C.V. Hoof, Ultra-low-power interface chip for autonomous capacitive sensor systems. IEEE Trans. Circuits Syst. Regul. Pap. 54(1), 130–140 (2007)CrossRefGoogle Scholar
  103. 103.
    Y.-C. Hung, B.-D. Liu, A 1 V CMOS analog comparator using auto-zero and complementary differential-input technique, in Proceedings. IEEE Asia-Pacific Conference on ASIC (2002), pp. 181–184Google Scholar
  104. 104.
    L.H.C. Ferreira, T.C. Pimenta, R.L. Moreno, An auto-zero sample-and-hold circuit in 0.8 μm CMOS, in 5th International Conference on ASIC (2003), pp. 510–513Google Scholar
  105. 105.
    R. Assaad, J. Silva-Martinez, Optimisation of direct auto-zeroing offset cancellation in low voltage applications using dual level CMFB. Electron. Lett. 45(16), 809–811 (2009)CrossRefGoogle Scholar
  106. 106.
    V. Srinivasan, G.J. Serrano, J. Gray, P. Hasler, A precision CMOS amplifier using floating-gate transistors for offset cancellation. IEEE J. Solid-State Circuits 42(2), 280–291 (2007)CrossRefGoogle Scholar
  107. 107.
    H.P. Forghani-Zadeh, G.A. Rincon-Mora, A programmable 210-μV offset rail-to-rail Gm-C filter. IEEE Trans. Circuits Syst. Regul. Pap. 54(8), 1636–1646 (2007)CrossRefGoogle Scholar
  108. 108.
    M.A.P. Pertijs, W.J. Kindt, A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J. Solid-State Circuits 45(10), 2044–2056 (2010)CrossRefGoogle Scholar
  109. 109.
    I.E. Opris, G.T.A. Kovacs, A rail-to-rail ping-pong op-amp. IEEE J. Solid-State Circuits 31(9), 1320–1324 (1996)CrossRefGoogle Scholar
  110. 110.
    M.C.W. Coln, Chopper stabilization of MOS operational amplifiers using feed-forward techniques. IEEE J. Solid-State Circuits 16(6), 745–748 (1981)CrossRefGoogle Scholar
  111. 111.
    I.G. Finvers, J.W. Haslett, F.N. Trofimenkoff, A high temperature precision amplifier. IEEE J. Solid-State Circuits 30(2), 120–128 (1995)CrossRefGoogle Scholar
  112. 112.
    B. Linares-Barranco, T. Serrano-Gotarredona, On the design and characterization of femtoampere current-mode circuits. IEEE J. Solid-State Circuits 38(8), 1353–1363 (2003)CrossRefGoogle Scholar
  113. 113.
    M. O’Halloran, R. Sarpeshkar, A 10-nW 12-bit accurate analog storage cell with 10-aA leakage. IEEE J. Solid-State Circuits 39(11), 1985–1996 (2004)CrossRefGoogle Scholar
  114. 114.
    K.B. Mirza, S. Luan, A. Eftekhar, T.G. Constandinou, Towards a fully-integrated solution for capacitor-based neural stimulation, in 2012 IEEE International Symposium on Circuits and Systems (2012), pp. 2243–2246Google Scholar
  115. 115.
    K. Ishida, K. Kanda, A. Tamtrakarn, H. Kawaguchi, T. Sakurai, Managing subthreshold leakage in charge-based analog circuits with low-VTH transistors by analog T- switch (AT-switch) and super cut-off CMOS (SCCMOS). IEEE J. Solid-State Circuits 41(4), 859–867 (2006)CrossRefGoogle Scholar
  116. 116.
    C. Mayr et al., A biological-realtime neuromorphic system in 28 nm cmos using low-leakage switched capacitor circuits. IEEE Trans. Biomed. Circuits Syst. 10(1), 243–254 (2016)CrossRefGoogle Scholar
  117. 117.
    M. Waltari, K. Halonen, Bootstrapped switch without bulk effect in standard CMOS technology. Electron. Lett. 38(12), 555–557 (2002)CrossRefGoogle Scholar
  118. 118.
    J. Steensgaard, Bootstrapped low-voltage analog switches, in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems 1999 (ISCAS ’99) (1999), pp. 29–32Google Scholar
  119. 119.
    C. Lillebrekke, C. Wulff, T. Ytterdal, Bootstrapped switch in low-voltage digital 90 nm CMOS technology, in 2005 NORCHIP (2005), pp. 234–236Google Scholar
  120. 120.
    A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34(5), 599–606 (1999)CrossRefGoogle Scholar
  121. 121.
    D. Aksin, M. Al-Shyoukh, F. Maloberti, Switch bootstrapping for precise sampling beyond supply voltage. IEEE J. Solid-State Circuits 41(8), 1938–1943 (2006)CrossRefGoogle Scholar
  122. 122.
    C.J.B. Fayomi, G.W. Roberts, M. Sawan, Low-voltage CMOS analog bootstrapped switch for sample-and-hold circuit: design and chip characterization, in 2005 IEEE International Symposium on Circuits and Systems (2005), pp. 2200–2203Google Scholar
  123. 123.
    T. Deliyannis, Y. Sun, J.K. Fidler, Continuous-Time Active Filter Design (CRC Press, Boca Raton, Fla, 1998)CrossRefGoogle Scholar
  124. 124.
    Y. Sun (ed.), Design of High Frequency Integrated Analogue Filters (First Edition edition. London, Institution of Engineering and Technology, 2002)Google Scholar
  125. 125.
    R.L. Geiger, E. Sánchez-Sinencio, Active filter design using operational transconductance amplifiers: a tutorial. IEEE Circuits Devices Mag. 1(2), 20–32 (1985)CrossRefGoogle Scholar
  126. 126.
    J.C. Voghell, M. Sawan, Current tuneable CMOS transconductor for filtering applications, in 2000 IEEE International Symposium on Circuits and Systems 2000. ISCAS 2000 Geneva (2000), pp. 165–168Google Scholar
  127. 127.
    H. Khorramabadi, P.R. Gray, High-frequency CMOS continuous-time filters. IEEE J. Solid-State Circuits 19(6), 939–948 (1984)CrossRefGoogle Scholar
  128. 128.
    A. Kaiser, A micropower CMOS continuous-time low-pass filter. IEEE J. Solid-State Circuits 24(3), 736–743 (1989)CrossRefGoogle Scholar
  129. 129.
    P. Wu, R. Schaumann, Design of a 1-GHz self-resonance integrated GaAs gyrator-C inductor, in Proceedings of the 33rd Midwest Symposium on Circuits and Systems (1990), pp. 362–365Google Scholar
  130. 130.
    R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems (Cambridge University Press, Cambridge, 2010Google Scholar
  131. 131.
    P. Crombez, J. Craninckx, M. Steyaert, A linearity and power efficient design strategy for architecture optimization of gm-C biquadratic filters, in Research in Microelectronics and Electronics Conference. PRIME 2007 (2007), pp. 229–232Google Scholar
  132. 132.
    E. Lebel, A. Assi, M. Sawan, Programmable monolithic Gm-C band-pass filter: design and experimental results. Analog Integr. Circuits Signal Process. 54(1), 21–29 (2007)CrossRefGoogle Scholar
  133. 133.
    J. Silva-Martinez, J. Adut, J.M. Rocha-Perez, M. Robinson, S. Rokhsaz, A 60-mW 200-MHz continuous-time seventh-order linear phase filter with on-chip automatic tuning system. IEEE J. Solid-State Circuits 38(2), 216–225 (2003)CrossRefGoogle Scholar
  134. 134.
    Y. Li, H. Yu, L. Jiang, Z. Ji, Design of low power CMOS band-pass Gm-C filter for 5.8 GHz RF transceiver of ETC system, in 2010 12th IEEE International Conference on Communication Technology (ICCT) (2010), pp. 1410–1413Google Scholar
  135. 135.
    P. Crombez, J. Craninckx, P. Wambacq, M. Steyaert, A 100-kHz to 20-MHz reconfigurable power-linearity optimized Gm-C biquad in 0.13-μm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 55(3), 224–228 (2008)Google Scholar
  136. 136.
    A.S. Sedra, K.C. Smith, Microelectronic Circuits: International edition, 6th edn. (OUP USA, New York, 2010)Google Scholar
  137. 137.
    C. Toumazou, F. J. Lidgey, D.G. Haigh, Analogue IC Design: the Current-Mode Approach, New Ed edition. The Institution of Engineering and Technology (1990)Google Scholar
  138. 138.
    B. Razavi, Design of Analog Cmos Integrated Circuit, International edition (McGraw-Hill Higher Education, New York, 2003)Google Scholar
  139. 139.
    E. Sanchez-Sinencio, J. Silva-Martinez, CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc. Circuits Devices Syst. 147(1), 3–12 (2000)CrossRefGoogle Scholar
  140. 140.
    Y. Tsividis, Z. Czarnul, S.C. Fang, MOS transconductors and integrators with high linearity. Electron. Lett. 22(5), 245–246 (1986)CrossRefGoogle Scholar
  141. 141.
    Z. Czarnul, Y. Tsividis, Independent tuning of quality factor and unity-gain frequency in a transconductance-capacitance integrator. Electron. Lett. 22(19), 1026–1027 (1986)CrossRefGoogle Scholar
  142. 142.
    F. Krummenacher, N. Joehl, A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits 23(3), 750–758 (1988)CrossRefGoogle Scholar
  143. 143.
    D.A. Johns, K. Martin, Analog Integrated Circuit Design (Wiley, New York, 1996)MATHGoogle Scholar
  144. 144.
    A. Lewinski, J. Silva-Martinez, OTA linearity enhancement technique for high frequency applications with IM3 below −65 dB. IEEE Trans. Circuits Syst. II Express Briefs 51(10), 542–548 (2004)CrossRefGoogle Scholar
  145. 145.
    A. Nedungadi, T. Viswanathan, Design of linear CMOS transconductance elements. IEEE Trans. Circuits Syst. 31(10), 891–894 (1984)CrossRefGoogle Scholar
  146. 146.
    R. van Langevelde, F.M. Klaassen, Effect of gate-field dependent mobility degradation on distortion analysis in MOSFETs. IEEE Trans. Electron Devices 44(11), 2044–2052 (1997)CrossRefGoogle Scholar
  147. 147.
    P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design (Oxford University Press, Oxford, 2002Google Scholar
  148. 148.
    K.-C. Kuo, A. Leuciuc, A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48(10), 937–943 (2001)CrossRefGoogle Scholar
  149. 149.
    S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, E. Sanchez-Sinencio, A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(12), 1391–1398 (2000)CrossRefGoogle Scholar
  150. 150.
    J. Silva-Martinez, S. Solis-Bustos, Design considerations for high performance very low frequency filters, in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999 (ISCAS ’99) (1999), pp. 648–651Google Scholar
  151. 151.
    J. Silva-Martinez, J. Salcedo-Suñer, IC voltage to current transducers with very small transconductance. Analog Integr. Circuits Signal Process. 13(3), 285–293 (1997)CrossRefGoogle Scholar
  152. 152.
    A. Veeravalli, E. Sanchez-Sinencio, J. Silva-Martinez, Transconductance amplifier structures with very small transconductances: a comparative design approach. IEEE J. Solid-State Circuits 37(6), 770–775 (2002)CrossRefGoogle Scholar
  153. 153.
    S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, R. Douglas, Analog VLSI: Circuits and Principles (MIT Press, Cambridge, Mass, 2002)Google Scholar
  154. 154.
    A. Wang, B.H. Calhoun, A.P. Chandrakasan, Sub-threshold Design for Ultra Low-Power Systems, Softcover reprint of hardcover 1st ed. 2006 edition (Springer, New York, 2009Google Scholar
  155. 155.
    P.M. Furth, On the design of optimal continuous-time filter banks in subthreshold CMOS, in PhD Thesis, John Hopkins, Baltimore, MA (1996)Google Scholar
  156. 156.
    C. Mead, Analogue and Neural Very Large Scale Integration Systems (Addison Wesley, Reading, Mass, 1989)Google Scholar
  157. 157.
    P.M. Furth, A.G. Andreou, Linearised differential transconductors in subthreshold CMOS. Electron. Lett. 31(7), 545–547 (1995)CrossRefGoogle Scholar
  158. 158.
    P. Kassanos, I.F. Triantis, A CMOS multi-sine signal generator for multi-frequency bioimpedance measurements, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (2014), pp. 249–252Google Scholar
  159. 159.
    P. Georgiou, C. Toumazou, ISFET characteristics in CMOS and their application to weak inversion operation. Sens. Actuators B Chem. 143(1), 211–217 (2009)CrossRefGoogle Scholar
  160. 160.
    D. Binkley, Tradeoffs and Optimization in Analog CMOS Design (Wiley, Chichester, West Sussex, UK, 2008)CrossRefGoogle Scholar
  161. 161.
    A.J. Casson, E. Rodriguez-Villegas, A 60 pW gmC continuous wavelet transform circuit for portable EEG systems. IEEE J. Solid-State Circuits 46(6), 1406–1415 (2011)CrossRefGoogle Scholar
  162. 162.
    L. Watts, D.A. Kerns, R.F. Lyon, C.A. Mead, Improved implementation of the silicon cochlea. IEEE J. Solid-State Circuits 27(5), 692–700 (1992)CrossRefGoogle Scholar
  163. 163.
    M. Ismail, T. Fiez, Analog VLSI: Signal and Information Processing (McGraw-Hill Education, 1994)Google Scholar
  164. 164.
    K. Bult, G.J.G.M. Geelen, An inherently linear and compact MOST-only current division technique. IEEE J. Solid-State Circuits 27(12), 1730–1735 (1992)CrossRefGoogle Scholar
  165. 165.
    H. Tanimoto, M. Koyama, Y. Yoshida, Realization of a 1-V active filter using a linearization technique employing plurality of emitter-coupled pairs. IEEE J. Solid-State Circuits 26(7), 937–945 (1991)CrossRefGoogle Scholar
  166. 166.
    B. Gilbert, The multi-tanh principle: a tutorial overview. IEEE J. Solid-State Circuits 33(1), 2–17 (1998)CrossRefGoogle Scholar
  167. 167.
    K. Kimura, The ultra-multi-tanh technique for bipolar linear transconductance amplifiers. IEEE Trans Circuits Syst. Fundam. Theory Appl. 44(4), 288–302 (1997)CrossRefGoogle Scholar
  168. 168.
    E. Rodriguez-Villegas, A.J. Casson, P. Corbishley, A subhertz nanopower low-pass filter. IEEE Trans. Circuits Syst. II Express Briefs 58(6), 351–355 (2011)CrossRefGoogle Scholar
  169. 169.
    P. Corbishley, E. Rodriguez-Villegas, A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector. IEEE Trans. Biomed. Circuits Syst. 1(3), 163–171 (2007)CrossRefGoogle Scholar
  170. 170.
    P.M. Furth, H.A. Ommani, Low-voltage highly-linear transconductor design in subthreshold CMOS, in Proceedings of the 40th Midwest Symposium on Circuits and Systems 1997 (1997), pp. 156–159Google Scholar
  171. 171.
    A.G. Katsiamis, E.M. Drakakis, R.F. Lyon, A biomimetic, 4.5 μW, 120 + dB, log-domain cochlea channel with AGC. IEEE J. Solid-State Circuits 44(3), 1006–1022 (2009)CrossRefGoogle Scholar
  172. 172.
    T. Delbruck, ‘Bump’ circuits for computing similarity and dissimilarity of analog voltages, in IJCNN-91-Seattle International Joint Conference on Neural Networks (1991), pp. 475–479Google Scholar
  173. 173.
    M.H. Cohen, A.C. Andreou, MOS circuit for nonlinear Hebbian learning. Electron. Lett. 28(6), 591–593 (1992)CrossRefGoogle Scholar
  174. 174.
    A. Pesavento and C. Koch, A wide linear range four quadrant multiplier in subthreshold CMOS, in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS ’99) (1999), pp. 240–243Google Scholar
  175. 175.
    M.W. Baker, R. Sarpeshkar, Low-power single-loop and dual-loop AGCs for bionic ears. IEEE J. Solid-State Circuits 41(9), 1983–1996 (2006)CrossRefGoogle Scholar
  176. 176.
    P. Georgiou, C. Toumazou, Towards an ultra low power chemically inspired electronic beta cell for diabetes, in 2006 IEEE International Symposium on Circuits and Systems (2006), pp. 173–176Google Scholar
  177. 177.
    K.H. Wee, R. Sarpeshkar, An electronically tunable linear or nonlinear MOS resistor. IEEE Trans. Circuits Syst. Regul. Pap. 55(9), 2573–2583 (2008)MathSciNetCrossRefGoogle Scholar
  178. 178.
    Y. Hu, Y. Liu, T.G. Constandinou, C. Toumazou, A 5 s-time-constant temperature-stable integrator for a tuneable PID controller in LOC applications, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011), pp. 1387–1390Google Scholar
  179. 179.
    B. Rumberg, D.W. Graham, A low-power and high-precision programmable analog filter bank. IEEE Trans. Circuits Syst. II Express Briefs 59(4), 234–238 (2012)CrossRefGoogle Scholar
  180. 180.
    B. Gosselin, M. Sawan, An ultra low-power CMOS automatic action potential detector. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 346–353 (2009)CrossRefGoogle Scholar
  181. 181.
    B. Gosselin, M. Sawan, E. Kerherve, Linear-phase delay filters for ultra-low-power signal processing in neural recording implants. IEEE Trans. Biomed. Circuits Syst. 4(3), 171–180 (2010)CrossRefGoogle Scholar
  182. 182.
    R. Sarpeshkar, R.F. Lyon, C. Mead, A low-power wide-linear-range transconductance amplifier. Analog Integr. Circuits Signal Process. 13(1–2), 123–151 (1997)CrossRefGoogle Scholar
  183. 183.
    T. Delbruck, Bump circuits for comparing similarity and dissimilarity of analog voltages. California Institute Of Technology, Pasadena, California, Memo 26, May 1993Google Scholar
  184. 184.
    A.E. Mourabit, G.-N. Lu, P. Pittet, Wide-linear-range subthreshold OTA for low-power, low-voltage, and low-frequency applications. IEEE Trans. Circuits Syst. Regul. Pap. 52(8), 1481–1488 (2005)CrossRefGoogle Scholar
  185. 185.
    J. Chen, E. Sanchez-Sinencio, J. Silva-Martinez, Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Trans. Circuits Syst. Regul. Pap. 53(3), 499–510 (2006)CrossRefGoogle Scholar
  186. 186.
    R. Chawla, F. Adil, G. Serrano, P.E. Hasler, Programmable Gm–C filters using floating-gate operational transconductance amplifiers. IEEE Trans. Circuits Syst. Regul. Pap. 54(3), 481–491 (2007)CrossRefGoogle Scholar
  187. 187.
    E. Rodriguez-Villegas, H. Barnes, Solution to trapped charge in FGMOS transistors. Electron. Lett. 39(19), 1416–1417 (2003)CrossRefGoogle Scholar
  188. 188.
    E. Rodriguez-Villegas, M. Jimenez, R.G. Carvajal, On dealing with the charge trapped in floating-gate MOS (FGMOS) transistors. IEEE Trans. Circuits Syst. II Express Briefs 54(2), 156–160 (2007)CrossRefGoogle Scholar
  189. 189.
    E. Rodriguez-Villegas, Low Power and Low Voltage Circuit Design with the FGMOS Transistor (Institution of Engineering and Technology, Stevenage, 2006)CrossRefGoogle Scholar
  190. 190.
    L. Zuo, S.K. Islam, Low-voltage bulk-driven operational amplifier with improved transconductance. IEEE Trans. Circuits Syst. Regul. Pap. 60(8), 2084–2091 (2013)CrossRefGoogle Scholar
  191. 191.
    J.M. Carrillo, G. Torelli, R.P.-A. Valverde, J.F. Duque-Carrillo, 1-V rail-to-rail CMOS OpAmp with improved bulk-driven input stage. IEEE J. Solid-State Circuits 42(3), 508–517 (2007)CrossRefGoogle Scholar
  192. 192.
    J.M. Carrillo, G. Torelli, J.F. Duque-Carrillo, Transconductance enhancement in bulk-driven input stages and its applications. Analog Integr. Circuits Signal Process. 68(2), 207–217 (2011)CrossRefGoogle Scholar
  193. 193.
    J.M. Carrillo, G. Torelli, M.A. Domínguez, J.F. Duque-Carrillo, On the input common-mode voltage range of CMOS bulk-driven input stages. Int. J. Circuit Theory Appl. 39(6), 649–664 (2011)CrossRefGoogle Scholar
  194. 194.
    P. Kinget, M. Steyaert, J. van der Spiegel, Full analog CMOS integration of very large time constants for synaptic transfer in neural networks. Analog Integr. Circuits Signal Process. 2(4), 281–295 (1992)CrossRefGoogle Scholar
  195. 195.
    A. Arnaud, R. Fiorelli, and C. Galup-Montoro, On the design of very small transconductance otas with reduced input offset, in 2005 18th Symposium on Integrated Circuits and Systems Design (2005), pp. 15–20Google Scholar
  196. 196.
    C. Galup-Montoro, M.C. Schneider, I.J.B. Loss, Series-parallel association of FET’s for high gain and high frequency applications. IEEE J. Solid-State Circuits 29(9), 1094–1101 (1994)CrossRefGoogle Scholar
  197. 197.
    M. Steyaert, P. Kinget, W. Sansen, Full integration of extremely large time constants in CMOS. Electron. Lett. 27(10), 790–791 (1991)CrossRefGoogle Scholar
  198. 198.
    A. Arnaud, C. Galup-Montoro, Pico-A/V range CMOS transconductors using series-parallel current division. Electron. Lett. 39(18), 1295–1296 (2003)CrossRefGoogle Scholar
  199. 199.
    A. Arnaud, R. Fiorelli, C. Galup-Montoro, Nanowatt, Sub-nS OTAs, with Sub-10-mV input offset, using series-parallel current mirrors. IEEE J. Solid-State Circuits 41(9), 2009–2018 (2006)CrossRefGoogle Scholar
  200. 200.
    R. Fiorelli, A. Arnaud, C. Galup-Montoro, Series-parallel association of transistors for the reduction of random offset in non-unity gain current mirrors, in Proceedings of the 2004 International Symposium on Circuits and Systems, 2004 (ISCAS ’04) (2004), pp. 881-884Google Scholar
  201. 201.
    C.C. Enz, E.A. Vittoz, CMOS low-power analog circuit design. Design. Low Power Digital Syst. Emerg. Technol. 1996, 79–133 (1996)CrossRefGoogle Scholar
  202. 202.
    B. Pankiewicz, M. Wojcikowski, S. Szczepanski, Y. Sun, A field programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE J. Solid-State Circuits 37(2), 125–136 (2002)CrossRefGoogle Scholar
  203. 203.
    J. Ramirez-Angulo, S.R.S. Garimella, A.J. Lopez-Martin, R.G. Carvajal, Gain programmable current mirrors based on current steering. Electron. Lett. 42(10), 559–560 (2006)CrossRefGoogle Scholar
  204. 204.
    A.J. Lopez-Martin, J. Ramirez-Angulo, C. Durbha, R.G. Carvajal, A CMOS transconductor with multidecade tuning using balanced current scaling in moderate inversion. IEEE J. Solid-State Circuits 40(5), 1078–1083 (2005)CrossRefGoogle Scholar
  205. 205.
    A.J. Lopez-Martin, J. Ramirez-Angulo, C. Durbha, R.G. Carvajal, Highly linear programmable balanced current scaling technique in moderate inversion. IEEE Trans. Circuits Syst. II Express Briefs 53(4), 283–285 (2006)CrossRefGoogle Scholar
  206. 206.
    Y. Tsividis, K. Suyama, K. Vavelidis, Simple ‘reconciliation’ MOSFET model valid in all regions. Electron. Lett. 31(6), 506–508 (1995)CrossRefGoogle Scholar
  207. 207.
    A.J. Lopez-Martin, J. Ramirez-Angulo, R.G. Carvajal, L. Acosta, CMOS transconductors with continuous tuning using FGMOS balanced output current scaling. IEEE J. Solid-State Circuits 43(5), 1313–1323 (2008)CrossRefGoogle Scholar
  208. 208.
    J. Silva-Martinez, M.S.J. Steyaert, W. Sansen, Design techniques for high-performance full-CMOS OTA-RC continuous-time filters. IEEE J. Solid-State Circuits 27(7), 993–1001 (1992)CrossRefGoogle Scholar
  209. 209.
    M. Banu, J.M. Khoury, Y. Tsividis, Fully differential operational amplifiers with accurate output balancing. IEEE J. Solid-State Circuits 23(6), 1410–1414 (1988)CrossRefGoogle Scholar
  210. 210.
    P. Wu, R. Schaumann, P. Latham, Design considerations for common-mode feedback circuits in fully-differential operational transconductance amplifiers with tuning, in IEEE International Symposium on Circuits and Systems 1991 (1991), pp. 1363–136Google Scholar
  211. 211.
    J.F. Duque-Carrillo, Control of the common-mode component in CMOS continuous-time fully differential signal processing. Analog Integr. Circuits Signal Process. 4(2), 131–140 (1993)CrossRefGoogle Scholar
  212. 212.
    J.N. Babanezhad, A low-output-impedance fully differential op amp with large output swing and continuous-time common-mode feedback. IEEE J. Solid-State Circuits 26(12), 1825–1833 (1991)CrossRefGoogle Scholar
  213. 213.
    P.M. VanPeteghem, J.F. Duque-Carrillo, A general description of common-mode feedback in fully-differential amplifiers, in IEEE International Symposium on Circuits and Systems (1990), pp. 320–312Google Scholar
  214. 214.
    L. Lah, J. Choma, J. Draper, A continuous-time common-mode feedback circuit (CMFB) for high-impedance current-mode applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(4), 363–369 (2000)CrossRefGoogle Scholar
  215. 215.
    W. Yan, H. Zimmermann, Continuous-time common-mode feedback circuit for applications with large output swing and high output impedance, in 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, 2008 (DDECS 2008) (2008), pp. 1–5Google Scholar
  216. 216.
    M. Maymandi-Nejad, M. Sachdev, Continuous time common mode feedback technique for sub 1 V analogue circuits. Electron. Lett. 38(23), 1408–1409 (2002)CrossRefGoogle Scholar
  217. 217.
    J. Silva-Martinez, A. Vazquez-Gonzalez, Impedance scalers for IC active filters, in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998 (ISCAS ’98) (1998), pp. 151–154Google Scholar
  218. 218.
    G. Doménech-Asensi et al., Low-frequency CMOS bandpass filter for PIR sensors in wireless sensor nodes. IEEE Sens. J. 14(11), 4085–4094 (2014)CrossRefGoogle Scholar
  219. 219.
    Y. Li, C.C.Y. Poon, Y.T. Zhang, Analog integrated circuits design for processing physiological signals. IEEE Rev. Biomed. Eng. 3, 93–105 (2010)CrossRefGoogle Scholar
  220. 220.
    W. Lee, S. Cho, Integrated all electrical pulse wave velocity and respiration sensors using bio-impedance. IEEE J. Solid-State Circuits 50(3), 776–785 (2015)CrossRefGoogle Scholar
  221. 221.
    L. Yan et al., A 13 μW analog signal processing IC for accurate recognition of multiple intra-cardiac signals. IEEE Trans. Biomed. Circuits Syst. 7(6), 785–795 (2013)CrossRefGoogle Scholar
  222. 222.
    S. Rodriguez, S. Ollmar, M. Waqar, A. Rusu, A batteryless sensor ASIC for implantable bio-impedance applications. IEEE Trans. Biomed. Circuits Syst. 10(3), 533–544 (2016)CrossRefGoogle Scholar
  223. 223.
    C.L. Wei, Y.W. Wang, B.D. Liu, Wide-range filter-based sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurements. IEEE Trans. Biomed. Circuits Syst. 8(3), 442–450 (2014)CrossRefGoogle Scholar
  224. 224.
    R.G. Meyer, W.M.C. Sansen, S. Peeters, The differential pair as a triangle-sine wave converter. IEEE J. Solid-State Circuits 11(3), 418–420 (1976)CrossRefGoogle Scholar
  225. 225.
    S. Thuries, É. Tournier, A. Cathelin, S. Godet, J. Graffeuil, A 6-GHz low-power BiCMOS SiGe: C 0.25 μm direct digital synthesizer. IEEE Microw. Wirel. Compon. Lett. 18(1), 46–48 (2008)Google Scholar
  226. 226.
    Z. Tang, O. Ishizuka, H. Matsumoto, MOS triangle-to-sine wave convertor based on subthreshold operation. Electron. Lett. 26(23), 1983–1985 (1990)CrossRefGoogle Scholar
  227. 227.
    A.A. Hatzopoulos, S. Siskos, J.M. Kontoleon, A complete scheme of built-in self-tests (BIST) structure for fault diagnosis in analog circuits and systems. IEEE Trans. Instrum. Measur. 42(3), 689–694 (1993)CrossRefGoogle Scholar
  228. 228.
    J. Gomez-Quiñones, et al., An application specific multi-channel stimulator for electrokinetically-driven microfluidic devices, in 2011 IEEE 9th International New Circuits and Systems Conference (2011), pp. 350–353Google Scholar
  229. 229.
    B. Gilbert, Circuits for the precise synthesis of the sine function. Electron. Lett. 13(17), 506–508 (1977)CrossRefGoogle Scholar
  230. 230.
    W.A. Evans, V. Schiffer, A low distortion tri-wave to sine converter. Radio Electron. Eng. 47(5), 217–224 (1977)CrossRefGoogle Scholar
  231. 231.
    O. Ishizuka, Z. Tang, H. Matsumoto, MOS sine function generator using exponential-law technique. Electron. Lett. 27(21), 1937–1939 (1991)CrossRefGoogle Scholar
  232. 232.
    B. Gilbert, A monolithic microsystem for analog synthesis of trigonometric functions and their inverses. IEEE J. Solid-State Circuits 17(6), 1179–1191 (1982)CrossRefGoogle Scholar
  233. 233.
    J.W. Fattaruso, R.G. Meyer, Triangle-to-sine wave conversion with MOS technology. IEEE J. Solid-State Circuits 20(2), 623–631 (1985)CrossRefGoogle Scholar
  234. 234.
    Y.G. Li, A.K.M. Arifuzzman, A.E. Pollard, M.R. Haider, An inductorless low-power tunable sinusoidal oscillator for micro-impedance spectroscopy, in IEEE 15th Annual Wireless and Microwave Technology Conference (WAMICON) (2014), pp. 1–4Google Scholar
  235. 235.
    T.H. Lee, P.A. Abshire, Accurate, wide range analog sine shaping circuits, in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (2014), pp. 285–288Google Scholar
  236. 236.
    C.Y. Yang, J.H. Weng, H.Y. Chang, A 5-GHz direct digital frequency synthesizer using an analog-sine-mapping technique in 0.35-μm SiGe BiCMOS. IEEE J. Solid-State Circuits 46(9), 2064–2072 (2011)Google Scholar
  237. 237.
    A. Rodriguez-Vazquez, B. Linares-Barranco, J.L. Huertas, E. Sanchez-Sinencio, On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Trans. Circuits Syst. 37(2), 198–211 (1990)CrossRefGoogle Scholar
  238. 238.
    B. Linares-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, CMOS OTA-C high-frequency sinusoidal oscillators. IEEE J. Solid-State Circuits 26(2), 160–165 (1991)CrossRefGoogle Scholar
  239. 239.
    B. Linares-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, Generation, design and tuning of OTA-C high frequency sinusoidal oscillators. IEE Proc. G - Circuits Devices Syst. 139(5), 557–568 (1992)CrossRefGoogle Scholar
  240. 240.
    T. Serrano-Gotarredona, B. Linares-Barranco, 7-decade tuning range CMOS OTA-C sinusoidal VCO. Electron. Lett. 34(17), 1621–1622 (1998)CrossRefGoogle Scholar
  241. 241.
    J. Galan, R.G. Carvajal, A. Torralba, F. Munoz, J. Ramirez-Angulo, A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range. IEEE Trans. Circuits Syst. Regul. Pap. 52(2), 283–291 (2005)CrossRefGoogle Scholar
  242. 242.
    B. Linares-Barranco, T. Serrano-Gotarredona, J. Ramos-Martos, J. Ceballos-Caceres, J.M. Mora, A. Linares-Barranco, A precise 90° quadrature OTA-C oscillator tunable in the 50–130-MHz range. IEEE Trans. Circuits Syst. Regul. Pap. 51(4), 649–663 (2004)CrossRefGoogle Scholar
  243. 243.
    K.M. Odame, P. Hasler, Theory and design of OTA-C oscillators with native amplitude limiting. IEEE Trans. Circuits Syst. Regul. Pap. 56(1), 40–50 (2009)MathSciNetCrossRefGoogle Scholar
  244. 244.
    N. Revanna, T. R. Viswanathan, Low frequency CMOS sinusoidal oscillator for impedance spectroscopy, in 2014 IEEE Dallas Circuits and Systems Conference (DCAS) (2014), pp. 1–4Google Scholar
  245. 245.
    B. Linares-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, 10 MHz CMOS OTA-C voltage-controlled quadrature oscillator. Electron. Lett. 25(12), 765–767 (1989)CrossRefGoogle Scholar
  246. 246.
    L.L. Presti, G. Cardamone, A direct digital frequency synthesizer using an IIR filter implemented with a DSP microprocessor, in 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing 1994 (ICASSP-94) (1994), p. III/201-III/204Google Scholar
  247. 247.
    M. Schanerberger, S.S. Awad, The implementation of a digital sine wave oscillator using the TMS320C25: distortion reduction and applications. IEEE Trans. Instrum. Meas. 39(6), 870–873 (1990)CrossRefGoogle Scholar
  248. 248.
    F. Kua, in Generation of a sine wave using a TMS320C54x digital signal processor. Texas Instruments, Application Report SPRA819, July 2004Google Scholar
  249. 249.
    A.I. Abu-el-haija, M.M. Al-ibrahim, Digital oscillator having low sensitivity and roundoff errors. IEEE Trans. Aerosp. Electron. Syst. AES-22(1), 23–33 (1986)Google Scholar
  250. 250.
    A. Abu-El-Haija, M. Al-Ibrahim, Improving performance of digital sinusoidal oscillators by means of error feedback circuits. IEEE Trans. Circuits Syst. 33(4), 373–380 (1986)CrossRefGoogle Scholar
  251. 251.
    A.I. Abu-El-Haija, M.M. Al-Ibrahim, M.A. Al-Jarrah, Recursive digital sine wave oscillators using the TMS32010 DSP, in Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (1994), pp. 792–796Google Scholar
  252. 252.
    S.M. Kuo, B.H. Lee, W. Tian, Real-Time Digital Signal Processing: Fundamentals, Implementations and Applications (Wiley, New York, 2013)Google Scholar
  253. 253.
    V. Matic, V. Marinkovic-Nedelicki, V. Tadic, Comparison of digital signal processing methods for sine wave signal generation, in Telecommunications Symposium. ITS ’98 Proceedings. SBT/IEEE International (1998), pp. 290–295Google Scholar
  254. 254.
    J.G. Proakis, D.K. Manolakis, Digital Signal Processing (Pearson Higher Ed, 2013)Google Scholar
  255. 255.
    L. Lo Presti, G. Cardamone, A. De Marchi, E. Rubiola, A new architecture for a sinewave output DDS with high spectral purity, in Direct Digital Frequency Synthesizers (Wiley-IEEE Press, New York, 1999), pp. 352–357Google Scholar
  256. 256.
    P.R.B. de Carvalho, J.A.A. Palacio, W.V. Noije, Area optimized CORDIC-based numerically controlled oscillator for electrical bio-impedance spectroscopy, in 2016 IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–6Google Scholar
  257. 257.
    C. Yang, A.J. Mason, Fully integrated seven-order frequency-range quadrature sinusoid signal generator. IEEE Trans. Instrum. Meas. 58(10), 3481–3489 (2009)CrossRefGoogle Scholar
  258. 258.
    D. Rairigh, X. Liu, C. Yang, A.J. Mason, Sinusoid signal generator for on-chip impedance spectroscopy, in 2009 IEEE International Symposium on Circuits and Systems (2009), pp. 1961–1964Google Scholar
  259. 259.
    M. Nawito, H. Richter, J.N. Burghartz, Compact wide-range sinusoidal signal generator for in vivo impedance spectroscopy, in 2015 Conference on Design of Circuits and Integrated Systems (DCIS) (2015), pp. 1–5Google Scholar
  260. 260.
    S.J. Kweon, S.H. Jo, J.H. Park, and H.J. Yoo, A CMOS sinusoidal signal generator based on mixed-time processing for electrical bioimpedance spectroscopy supporting beta dispersion range, in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (2016), pp. 91–94Google Scholar
  261. 261.
    J. Vankka, M. Waltari, M. Kosunen, K.A.I. Halonen, A direct digital synthesizer with an on-chip D/A-converter. IEEE J. Solid-State Circuits 33(2), 218–227 (1998)CrossRefGoogle Scholar
  262. 262.
    J.M.P. Langlois, D. Al-Khalili, Novel approach to the design of direct digital frequency synthesizers based on linear interpolation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 50(9), 567–578 (2003)CrossRefGoogle Scholar
  263. 263.
    B.-D. Yang, J.H. Choi, S.-H. Han, L.-S. Kim, H.-K. Yu, An 800-MHz low-power direct digital frequency synthesizer with an on-chip D/A converter. IEEE J. Solid-State Circuits 39(5), 761–774 (2004)Google Scholar
  264. 264.
    A.L. McEwan, S. Collins, Efficient, ROM-less DDFS using non-linear interpolation and non-linear DAC. Analog Integr. Circuits Signal Process. 48(3), 231–237 (2006)CrossRefGoogle Scholar
  265. 265.
    X. Yu, F.F. Dai, J.D. Irwin, R.C. Jaeger, A 12 GHz 1.9 W direct digital synthesizer MMIC implemented in 0.18 m SiGe BiCMOS technology. IEEE J. Solid-State Circuits 43(6), 1384–1393 (2008)CrossRefGoogle Scholar
  266. 266.
    C. Shi, E. Sánchez-Sinencio, 150-850 MHz high-linearity sine-wave synthesizer architecture based on FIR filter approach and SFDR optimization. IEEE Trans. Circuits Syst. Regul. Pap. 62(9), 2227–2237 (2015)CrossRefGoogle Scholar
  267. 267.
    L. Constantinou, R. Bayford, A. Demosthenous, A wideband low-distortion cmos current driver for tissue impedance analysis. IEEE Trans. Circuits Syst. II Express Briefs 62(2), 154–158 (2015)CrossRefGoogle Scholar
  268. 268.
    L. Constantinou, I.F. Triantis, R. Bayford, A. Demosthenous, High-power CMOS current driver with accurate transconductance for electrical impedance tomography. IEEE Trans. Biomed. Circuits Syst. 8(4), 575–583 (2014)CrossRefGoogle Scholar
  269. 269.
    N.V. Helleputte et al., A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J. Solid-State Circuits 50(1), 230–244 (2015)CrossRefGoogle Scholar
  270. 270.
    M. Crescentini, M. Bennati, M. Tartagni, A high resolution interface for Kelvin impedance sensing. IEEE J. Solid-State Circuits 49(10), 2199–2212 (2014)CrossRefGoogle Scholar
  271. 271.
    R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, N.V. Thakor, 16-channel integrated potentiostat for distributed neurochemical sensing. IEEE Trans. Circuits Syst. Regul. Pap. 53(11), 2371–2376 (2006)CrossRefGoogle Scholar
  272. 272.
    S. Shin, S. J. Kweon, J.H. Park, Y.C. Choi, H.J. Yoo, An efficient, wide range time-to-digital converter using cascaded time-interpolation stages for electrical impedance spectroscopy, in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (2016), pp. 425–428Google Scholar
  273. 273.
    H. Huang, S. Palermo, A TDC-based front-end for rapid impedance spectroscopy, in 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS) (2013), pp. 169–172Google Scholar
  274. 274.
    T.A. Chen, W.J. Wu, C.L. Wei, R.B. Darling, B.D. Liu, Novel 10-bit impedance-to-digital converter for electrochemical impedance spectroscopy measurements. IEEE Trans. Biomed. Circuits Syst. 11(2), 370–379 (2017)Google Scholar
  275. 275.
    J. Rosell, P. Riu, Common-mode feedback in electrical impedance tomography. Clin. Phys. Physiol. Measur. 13(A), 11 (1992)Google Scholar
  276. 276.
    M. Rahal, A. Demosthenous, R. Bayford, An integrated common-mode feedback topology for multi-frequency bioimpedance imaging, in 2009 Proceedings of ESSCIRC (2009), pp. 416–419Google Scholar
  277. 277.
    P.J. Langlois, Y. Wu, R.H. Bayford, A. Demosthenous, On the application of frequency selective common mode feedback for multifrequency EIT. Physiol. Measur. 36(6), 1337 (2015)CrossRefGoogle Scholar
  278. 278.
    X. Tan et al., 4.3 μW 10 fA-sensitivity dual-mode current converter for implantable glucose monitoring. Electron. Lett. 51(19), 1484–1486 (2015)CrossRefGoogle Scholar
  279. 279.
    C. Yang, Y. Huang, B.L. Hassler, R.M. Worden, A.J. Mason, Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 3(3), 160–168 (2009)CrossRefGoogle Scholar
  280. 280.
    L. Li, X. Liu, W.A. Qureshi, A.J. Mason, CMOS amperometric instrumentation and packaging for biosensor array applications. IEEE Trans. Biomed. Circuits Syst. 5(5), 439–448 (2011)CrossRefGoogle Scholar
  281. 281.
    S. Hwang, C.N. LaFratta, V. Agarwal, X. Yu, D.R. Walt, S. Sonkusale, CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sens. J. 9(6), 609–615 (2009)CrossRefGoogle Scholar
  282. 282.
    P.M. Levine, P. Gong, R. Levicky, K.L. Shepard, Active CMOS sensor array for electrochemical biomolecular detection. IEEE J. Solid-State Circuits 43(8), 1859–1871 (2008)CrossRefGoogle Scholar
  283. 283.
    D. Kim, B. Goldstein, W. Tang, F.J. Sigworth, E. Culurciello, Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(1), 52–62 (2013)CrossRefGoogle Scholar
  284. 284.
    S. Ayers, K.D. Gillis, M. Lindau, B.A. Minch, Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Trans. Circuits Syst. Regul. Pap. 54(4), 736–744 (2007)CrossRefGoogle Scholar
  285. 285.
    M.M. Ahmadi, G.A. Jullien, Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans. Circuits Syst. Regul. Pap. 56(7), 1339–1348 (2009)MathSciNetCrossRefGoogle Scholar
  286. 286.
    C.I. Dorta-Quiñones, X.Y. Wang, R.K. Dokania, A. Gailey, M. Lindau, A.B. Apsel, A wireless FSCV monitoring IC with analog background subtraction and UWB telemetry. IEEE Trans. Biomed. Circuits Syst. 10(2), 289–299 (2016)CrossRefGoogle Scholar
  287. 287.
    V. Balasubramanian, P.F. Ruedi, Y. Temiz, A. Ferretti, C. Guiducci, C.C. Enz, A 0.18 μm biosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques. IEEE Trans. Biomed. Circuits Syst. 7(5), 660–673 (2013)CrossRefGoogle Scholar
  288. 288.
    M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)CrossRefGoogle Scholar
  289. 289.
    M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, N.V. Thakor, VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst. 1(1), 63–72 (2007)CrossRefGoogle Scholar
  290. 290.
    M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3(6), 388–397 (2009)CrossRefGoogle Scholar
  291. 291.
    M. Roham et al., A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans. Biomed. Circuits Syst. 2(1), 3–9 (2008)CrossRefGoogle Scholar
  292. 292.
    B. Bozorgzadeh, D.P. Covey, C.D. Howard, P.A. Garris, P. Mohseni, A Neurochemical Pattern generator SoC with switched-electrode management for single-chip electrical stimulation and 9.3 μW, 78 pA rms, 400 V/s FSCV sensing. IEEE J. Solid-State Circuits 49(4), 881–895 (2014)CrossRefGoogle Scholar
  293. 293.
    B. Bozorgzadeh, D.R. Schuweiler, M.J. Bobak, P.A. Garris, P. Mohseni, Neurochemostat: a neural interface SoC with integrated chemometrics for closed-loop regulation of brain dopamine. IEEE Trans. Biomed. Circuits Syst. 10(3), 654–667 (2016)CrossRefGoogle Scholar
  294. 294.
    C.A. Murillo, B. C. Lopez, S.C. Pueyo, Voltage-to-Frequency Converters: CMOS Design and Implementation (Springer Science & Business Media, Berlin, 2013)Google Scholar
  295. 295.
    I.M. Filanovsky, H. Baltes, CMOS Schmitt trigger design. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 41(1), 46–49 (1994)Google Scholar
  296. 296.
    C. Azcona, B. Calvo, N. Medrano, S. Celma, 1.2 V-0.18-μm CMOS temperature sensors with quasi-digital output for portable systems. IEEE Trans. Instrum. Meas. 64(9), 2565–2573 (2015)Google Scholar
  297. 297.
    A.B. Grebene, Bipolar and MOS Analog Integrated Circuit Design (Wiley-Interscience, New York, 2002)Google Scholar
  298. 298.
    C.C. Wang, T.J. Lee, C.C. Li, R. Hu, An All-MOS high-linearity voltage-to-frequency converter chip with 520-kHz/V sensitivity. IEEE Trans. Circuits Syst. II Express Briefs 53(8), 744–747 (2006)CrossRefGoogle Scholar
  299. 299.
    V. Srinivasan, R. Chawla, P. Hasler, Linear current-to-voltage and voltage-to-current converters, in 48th Midwest Symposium on Circuits and Systems (2005), pp. 675–678Google Scholar
  300. 300.
    R. Shukla, J. Ramirez-Angulo, A. Lopez-Martin, R.G. Carvajal, A low voltage rail to rail V-I conversion scheme for applications in current mode A/D converters, in 2004 IEEE International Symposium on Circuits and Systems (2004), I-916-19Google Scholar
  301. 301.
    A.J. Lopez-Martin, J. Ramirez-Angulo, R.G. Carvajal, ±1.5V 3mW CMOS V–I converter with 75 dB SFDR for 6 Vpp input swings. Electron. Lett. 43(6), 31–32 (2007)Google Scholar
  302. 302.
    C. Azcona, B. Calvo, S. Celma, N. Medrano, P.A. Martínez, Low-voltage low-power CMOS rail-to-rail voltage-to-current converters. IEEE Trans. Circuits Syst. Regul. Pap. 60(9), 2333–2342 (2013)MathSciNetCrossRefGoogle Scholar
  303. 303.
    C. Azcona, B. Calvo, S. Celma, N. Medrano, P.A. Martínez, Ratiometric voltage-to-frequency converter for long-life autonomous portable equipment. IEEE Sens. J. 13(6), 2382–2390 (2013)CrossRefGoogle Scholar
  304. 304.
    R.A. Croce et al., A highly miniaturized low-power CMOS-Based pH monitoring platform. IEEE Sens. J. 15(2), 895–901 (2015)MathSciNetCrossRefGoogle Scholar
  305. 305.
    K. Zhu, S.K. Islam, M.R. Haider, M. Roknsharifi, J. Holleman, Simple oscillators-based readout circuit for low-power biomedical implant system. Analog Integr. Circuits Signal Process. 72(2), 383–393 (2012)CrossRefGoogle Scholar
  306. 306.
    D. Cirmirakis, A. Demosthenous, N. Saeidi, N. Donaldson, Humidity-to-frequency sensor in CMOS technology with wireless readout. IEEE Sens. J. 13(3), 900–908 (2013)CrossRefGoogle Scholar
  307. 307.
    M.S.-C. Lu, Y.-C. Chen, P.-C. Huang, 5 × 5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Biosens. Bioelectron. 26(3), 1093–1097 (2010)CrossRefGoogle Scholar
  308. 308.
    A. Bonanno, M. Crepaldi, I. Rattalino, P. Motto, D. Demarchi, P. Civera, A CMOS operational Schmitt trigger R-to-F converter for nanogap-based nanosensors read-out. IEEE Trans. Circuits Syst. Regul. Pap. 60(4), 975–988 (2013)CrossRefGoogle Scholar
  309. 309.
    M. Grassi, P. Malcovati, A. Baschirotto, A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid-State Circuits 42(7), 1543–1554 (2007)CrossRefGoogle Scholar
  310. 310.
    W. Yun, R.T. Howe, P.R. Gray, Surface micromachined, digitally force-balanced accelerometer with integrated CMOS detection circuitry, in Technical Digest IEEE Solid-State Sensor and Actuator Workshop (1992), pp. 126–131Google Scholar
  311. 311.
    P. Holmberg, Automatic balancing of linear AC bridge circuits for capacitive sensor elements. IEEE Trans. Instrum. Meas. 44(3), 803–805 (1995)CrossRefGoogle Scholar
  312. 312.
    J.A. Geen, S.J. Sherman, J.F. Chang, S.R. Lewis, Single-chip surface micromachined integrated gyroscope with 50°/h Allan deviation. IEEE J. Solid-State Circuits 37(12), 1860–1866 (2002)CrossRefGoogle Scholar
  313. 313.
    N. Yazdi, A. Mason, K. Najafi, K.D. Wise, A generic interface chip for capacitive sensors in low-power multi-parameter microsystems. Sens. Actuators Phys. 84(3), 351–361 (2000)CrossRefGoogle Scholar
  314. 314.
    H. Kulah, J. Chae, N. Yazdi, K. Najafi, Noise analysis and characterization of a sigma-delta capacitive microaccelerometer. IEEE J. Solid-State Circuits 41(2), 352–361 (2006)CrossRefGoogle Scholar
  315. 315.
    W.P. Chan et al., A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J. Solid-State Circuits 49(11), 2449–2461 (2014)CrossRefGoogle Scholar
  316. 316.
    Y.M. Wang, P.K. Chan, H.K.H. Li, S.E. Ong, A low-power highly sensitive capacitive accelerometer IC using auto-zero time-multiplexed differential technique. IEEE Sens. J. 15(11), 6179–6191 (2015)CrossRefGoogle Scholar
  317. 317.
    Z.P. Fang, J.T. Mortimer, Selective activation of small motor axons by quasitrapezoidal current pulses. IEEE Trans. Biomed. Eng. 38(2), 168–174 (1991)CrossRefGoogle Scholar
  318. 318.
    W.M. Grill, J.T. Mortimer, The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans. Biomed. Eng. 43(2), 161–166 (1996)CrossRefGoogle Scholar
  319. 319.
    J.J. Sit, R. Sarpeshkar, A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans. Biomed. Circuits Syst. 1(3), 172–183 (2007)CrossRefGoogle Scholar
  320. 320.
    I. Williams, T.G. Constandinou, An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013)CrossRefGoogle Scholar
  321. 321.
    T.G. Constandinou, J. Georgiou, C. Toumazou, A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Trans. Biomed. Circuits Syst. 2(2), 106–113 (2008)CrossRefGoogle Scholar
  322. 322.
    E. Greenwald, et al., A CMOS current steering neurostimulation array with integrated DAC calibration and charge balancing. IEEE Trans. Biomed. Circuits Syst. 11(2), 324–335 (2017)Google Scholar
  323. 323.
    D. Jiang, A. Demosthenous, T. Perkins, X. Liu, N. Donaldson, A stimulator ASIC featuring versatile management for vestibular prostheses. IEEE Trans. Biomed. Circuits Syst. 5(2), 147–159 (2011)CrossRefGoogle Scholar
  324. 324.
    N. Tran et al., A complete 256-electrode retinal prosthesis chip. IEEE J. Solid-State Circuits 49(3), 751–765 (2014)MathSciNetCrossRefGoogle Scholar
  325. 325.
    H. Tang, Z.C. Sun, K.W.R. Chew, L. Siek, A 1.33 μW 8.02-ENOB 100 kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis. IEEE Trans. Biomed. Circuits Syst. 8(6), 844–856 (2014)CrossRefGoogle Scholar
  326. 326.
    J.H. Tsai et al., A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS with digital error correction and correlated-reversed switching. IEEE J. Solid-State Circuits 50(6), 1382–1398 (2015)CrossRefGoogle Scholar
  327. 327.
    F.M. Yaul, A.P. Chandrakasan, A 10 bit SAR ADC with data-dependent energy reduction using LSB-first successive approximation. IEEE J. Solid-State Circuits 49(12), 2825–2834 (2014)CrossRefGoogle Scholar
  328. 328.
    X. Xing, G.G.E. Gielen, A 42 fJ/Step-FoM two-step VCO-based delta-sigma ADC in 40 nm CMOS. IEEE J. Solid-State Circuits 50(3), 714–723 (2015)CrossRefGoogle Scholar
  329. 329.
    X. Zhang, Y. Lian, A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 8(6), 834–843 (2014)CrossRefGoogle Scholar
  330. 330.
    A. Rodríguez-Pérez, M. Delgado-Restituto, F. Medeiro, A 515 nW, 0-18 dB programmable gain analog-to-digital converter for in-channel neural recording interfaces. IEEE Trans. Biomed. Circuits Syst. 8(3), 358–370 (2014)CrossRefGoogle Scholar
  331. 331.
    S. Oh et al., A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system. IEEE J. Solid-State Circuits 50(7), 1581–1591 (2015)CrossRefGoogle Scholar
  332. 332.
    H. Nakane et al., A fully integrated SAR ADC using digital correction technique for triple-mode mobile transceiver. IEEE J. Solid-State Circuits 49(11), 2503–2514 (2014)CrossRefGoogle Scholar
  333. 333.
    C.H. Chen, Y. Zhang, T. He, P.Y. Chiang, G.C. Temes, A micro-power two-step incremental analog-to-digital converter. IEEE J. Solid-State Circuits 50(8), 1796–1808 (2015)CrossRefGoogle Scholar
  334. 334.
    Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)CrossRefGoogle Scholar
  335. 335.
    A. Sukumaran, S. Pavan, Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback. IEEE J. Solid-State Circuits 49(11), 2515–2525 (2014)CrossRefGoogle Scholar
  336. 336.
    G.Y. Huang, S.J. Chang, C.C. Liu, Y.Z. Lin, A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications. IEEE J. Solid-State Circuits 47(11), 2783–2795 (2012)CrossRefGoogle Scholar
  337. 337.
    A. Shikata, R. Sekimoto, T. Kuroda, H. Ishikuro, A 0.5 V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS, in 2011 Symposium on VLSI Circuits—Digest of Technical Papers (2011), pp. 262–263Google Scholar
  338. 338.
    J. Zhang, Y. Lian, L. Yao, B. Shi, A 0.6-V 82-dB 28.6-μW continuous-time audio delta-sigma modulator. IEEE J. Solid-State Circuits 46(10), 2326–2335 (2011)CrossRefGoogle Scholar
  339. 339.
    K. Kim, Y. Kim, W. Yu, S. Cho, A 7b, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier, in 2012 Symposium on VLSI Circuits (VLSIC) (2012), pp. 192–193Google Scholar
  340. 340.
    S. Naraghi, M. Courcy, M.P. Flynn, A 9-bit, 14 μW and 0.06 mm2 Pulse position modulation ADC in 90 nm digital CMOS. IEEE J. Solid-State Circuits 45(9), 1870–1880 (2010)Google Scholar
  341. 341.
    M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E.A.M. Klumperink, B. Nauta, A 10-bit charge-redistribution ADC consuming 1.9 μW at 1 MS/s. IEEE J. Solid-State Circuits 45(5), 1007–1015 (2010)CrossRefGoogle Scholar
  342. 342.
    S.K. Lee, S.J. Park, H.J. Park, J.Y. Sim, A 21 fJ/conversion-step 100 kS/s 10-bit ADC with a low-noise time-domain comparator for low-power sensor interface. IEEE J. Solid-State Circuits 46(3), 651–659 (2011)CrossRefGoogle Scholar
  343. 343.
    D. Zhang, A. Bhide, A. Alvandpour, A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices. IEEE J. Solid-State Circuits 47(7), 1585–1593 (2012)Google Scholar
  344. 344.
    C.C. Lee, M.P. Flynn, A SAR-assisted two-stage pipeline ADC. IEEE J. Solid-State Circuits 46(4), 859–869 (2011)CrossRefGoogle Scholar
  345. 345.
    R. Xu, B. Liu, J. Yuan, Digitally calibrated 768-kS/s 10-b minimum-size SAR ADC array with dithering. IEEE J. Solid-State Circuits 47(9), 2129–2140 (2012)CrossRefGoogle Scholar
  346. 346.
    H.C. Hong, G.M. Lee, A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC. IEEE J. Solid-State Circuits 42(10), 2161–2168 (2007)CrossRefGoogle Scholar
  347. 347.
    P.J.A. Harpe et al., A 26 μW 8 bit 10 MS/s asynchronous SAR ADC for low energy radios. IEEE J. Solid-State Circuits 46(7), 1585–1595 (2011)CrossRefGoogle Scholar
  348. 348.
    T.C. Sepke, in Comparator design and analysis for comparator-based switched-capacitor circuits. Thesis, Massachusetts Institute of Technology (2006)Google Scholar
  349. 349.
    E. Roza, Analog-to-digital conversion via duty-cycle modulation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44(11), 907–914 (1997)CrossRefGoogle Scholar
  350. 350.
    P.R. Kinget, A. A. Lazar, L.T. Toth, On the robustness of an analog VLSI implementation of a time encoding machine, in 2005 IEEE International Symposium on Circuits and Systems (2005), pp. 4221–4224Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Hamlyn CentreImperial College LondonLondonUK

Personalised recommendations