Skip to main content

Sensor Embodiment and Flexible Electronics

  • Chapter
  • First Online:
Implantable Sensors and Systems

Abstract

Sensor embodiment and packaging are particularly important for implantable systems. One key element is the development of flexible electronics . Traditional electronics , based on rigid silicon technologies, is associated with a number of intrinsic disadvantages. The inherent brittleness of inorganic semiconductors and stiffness of Si wafer-based devices represent a major issue when interfaced with tissues. This is because our internal organs are complex and they have innate responses to reject foreign bodies. Furthermore, tissues are soft, and they undergo constant motion and deformation. In this chapter, we will discuss current progress in flexible printed circuit board (FPC/FPCB) technologies and provide a review of new fabrication techniques and materials for making soft devices and interconnects suitable for implantable applications. Issues related to geometrical designs for mechanically resilient flexible devices, hermetic packaging , biocompatibility and encapsulation are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D-MIN:

3D multifunctional integumentary membrane

ASIC:

Application-specific integrated circuit

CAD:

Computer aided design

CDG:

Chemically derived graphene

CINE:

Combination of interconnects and electronics

CMOS:

Complementary metal-oxide-semiconductor

CNT:

Carbon nanotubes

CP:

Conductive polymer

CPC:

Conductive polymer composite

CVD:

Chemical vapor deposition

DAC:

Digital to analog converter

DoD:

Droplets-on-demand

ECG:

Electrocardiogram

EEG:

Electroencephalogram

EMG:

Electromyogram

EOG:

Electro-oculogram

FBR:

Foreign body response

FDA:

Food and Drug Administration

FEM:

Finite element method

FET:

Field-effect transistor

FLEPS:

Flexible letterpress stamping

FLG:

Few layer graphene

FPC/FPCB:

Flexible printed circuit board

FR-4:

Flame retardant type four

GI:

Gastrointestinal

GO x :

Glucose oxidase

GO:

Graphene oxide

h-BN:

Hexagonal boron nitride

HF:

Hydrogen fluoride

HMDS:

Hexamethyldisiloxane

IC:

Integrated circuit

ICP:

Intrinsically conductive polymer

ISO:

International Organization for Standardization

LCP:

Liquid crystal polymer

LED:

Light emitting diode

µCP:

Micro contact printing

MEMS:

Micro-electro-mechanical-system

MMD:

Multilevel matrix deposition

MMIC:

Micromolding in capillaries

MOEMS:

Micro-opto-electro-mechanical system

MOS:

Metal-oxide-semiconductor

MOSFET:

Metal-oxide-semiconductor field-effect transistor

MRI:

Magnetic resonance imaging

MSM:

Metal-semiconductor-metal

MTTF:

Mean-time-to-failure

NIL:

Nanoimprint lithography

NM:

Nano-membrane

NO:

Nitric oxide

NP:

Nanoparticle

OFET:

Organic field-effect transistor

OLED:

Organic light emitting diode

OTFT:

Organic thin-film transistors

OVPD:

Organic vapor phase deposition

PA:

Polyacetylene

PANI:

Polyaniline

PAR:

Polyarylate

PBS:

Phosphate buffered saline

PC:

Polycarbonate

PCB:

Printed circuit board

PCL:

Polycaprolactone

PDGF:

Platelet-derived growth factor

PDMS:

Polydimethylsiloxane

PEDOT:

Poly (3,4-ethylene dioxythiophene)

PEDOT:PSS:

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

PEEK:

Polyetheretherketone

PEG:

Polyethylene glycol

PEN:

Poly(ethylene naphthalate)

PEO:

Polyethylene oxide

PES:

Polyethersulphone

PF:

Polyfuran

PI:

Polyimide

PLGA:

Poly(lactic-co-glycolic acid)

PMMA:

Poly (methylmethacrylate)

PNB:

Polynorbornene

PPG:

Photoplethysmography

PPV:

Poly(p-phenylene-vinylene)

PPy:

Polypyrrole

PTh:

Polythiophene

PVA:

Polyvinyl alcohol

PVD:

Physical vapor deposition

RF:

Radio frequency

RH:

Relative humidity

rGO:

Reduced graphene oxide

SAB:

Surface activated bonding

SAM:

Self-assembled monolayer

SEM:

Scanning electron microscope

SMP:

Shape-memory polymer

SOI:

Silicon on insulator

SPR:

Surface plasmon resonancel

TMDs:

Transition metal dichalcogenides

TPU:

Thermoplastic polyurethane

TRM:

Tissue response modifier

UBM:

Under bump metallization

UV:

Ultraviolet

UVO:

Ultraviolet/ozone

VEGF:

Vascular endothelial growth factor

VTE:

Vacuum thermal evaporation

References

  1. A. Bozkurt, A. Lal, Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system. Sens. Actuators Phys. 169(1), 89–97 (2011)

    Article  Google Scholar 

  2. P. Kassanos, H.M.D. Ip, G.-Z. Yang, A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (2015), pp. 1–6

    Google Scholar 

  3. C. Kallmayer, E. Simon, Large area sensor integration in textiles, in 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD) (2012), pp. 1–5

    Google Scholar 

  4. A. Nelson et al., Wearable multi-sensor gesture recognition for paralysis patients, in 2013 IEEE SENSORS (2013), pp. 1–4

    Google Scholar 

  5. R.G. Haahr et al., An electronic patch for wearable health monitoring by reflectance pulse oximetry. IEEE Trans. Biomed. Circuits Syst. 6(1), 45–53 (2012)

    Article  Google Scholar 

  6. C.M. Chen, R. Kwasnicki, B. Lo, G.-Z. Yang, Wearable tissue oxygenation monitoring sensor and a forearm vascular phantom design for data validation, in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (2014), pp. 64–68

    Google Scholar 

  7. R. Dekker et al., Living chips and chips for the living, in 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2012), pp. 1–9

    Google Scholar 

  8. J. Reeder et al., Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26(29), 4967–4973 (2014)

    Article  Google Scholar 

  9. Doppler Blood Flow Monitor, Cook medical. [Online]. Available: https://www.cookmedical.com/products/33eecd89-149b-4d3c-955a-213541b21142/. Accessed: 22 Sep 2016

  10. L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014)

    Google Scholar 

  11. D.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  Google Scholar 

  12. W.-H. Yeo et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)

    Article  Google Scholar 

  13. H. Tao et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. 111(49), 17385–17389 (2014)

    Article  Google Scholar 

  14. J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)

    Article  Google Scholar 

  15. S.P. Lee et al., Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proc. IEEE 103(4), 682–689 (2015)

    Article  Google Scholar 

  16. D.-H. Kim et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10(4), 316–323 (2011)

    Article  Google Scholar 

  17. T. Yokota et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016)

    Article  Google Scholar 

  18. S.-W. Hwang et al., A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)

    Article  Google Scholar 

  19. M.S. Mannoor et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)

    Article  Google Scholar 

  20. H. Tao et al., Implantable, multifunctional, bioresorbable optics. Proc. Natl. Acad. Sci. 109(48), 19584–19589 (2012)

    Article  Google Scholar 

  21. D.-H. Kim et al., Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. 109(49), 19910–19915 (2012)

    Article  Google Scholar 

  22. L. Xu et al., Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27(10), 1731–1737 (2015)

    Article  Google Scholar 

  23. G. Park et al., Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv. Healthc. Mater. 3(4), 515–525 (2014)

    Article  Google Scholar 

  24. M.A. Deeds, P.A. Sandborn, MOEMS chip-level optical fiber interconnect. IEEE Trans. Adv. Packag. 28(4), 612–618 (2005)

    Article  Google Scholar 

  25. M. Lapisa, G. Stemme, F. Niklaus, Wafer-Level Heterogeneous Integration for MOEMS, MEMS, and NEMS. IEEE J. Sel. Top. Quantum Electron. 17(3), 629–644 (2011)

    Article  Google Scholar 

  26. R. Özgün, B.J. Jung, B.M. Dhar, H.E. Katz, A.G. Andreou, Silicon-on-insulator (SOI) integration for organic field effect transistor (OFET) based circuits, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011), pp. 2253–2256

    Google Scholar 

  27. M. Luo, A.W. Martinez, C. Song, F. Herrault, M.G. Allen, A Microfabricated wireless RF pressure sensor made completely of biodegradable materials. J. Microelectromechanical Syst. 23(1), 4–13 (2014)

    Article  Google Scholar 

  28. T. Adrega, S.P. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J. Micromechanics Microengineering 20(5), 055025 (2010)

    Article  Google Scholar 

  29. X. Hu, P. Krull, B. de Graff, K. Dowling, J.A. Rogers, W.J. Arora, Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 23(26), 2933–2936 (2011)

    Article  Google Scholar 

  30. Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1(3), 201–207 (2006)

    Article  Google Scholar 

  31. M.J. Allen et al., Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)

    Article  Google Scholar 

  32. X. Liang, Z. Fu, S.Y. Chou, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)

    Article  Google Scholar 

  33. A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284–5318 (2012)

    Article  Google Scholar 

  34. C. Kim, P.E. Burrows, S.R. Forrest, Micropatterning of organic electronic devices by cold-welding. Science 288(5467), 831–833 (2000)

    Article  Google Scholar 

  35. C. Kim, S.R. Forrest, Fabrication of organic light-emitting devices by low-pressure cold welding. Adv. Mater. 15(6), 541–545 (2003)

    Google Scholar 

  36. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Google Scholar 

  37. C. Kim, M. Shtein, S.R. Forrest, Nanolithography based on patterned metal transfer and its application to organic electronic devices. Appl. Phys. Lett. 80(21), 4051–4053 (2002)

    Article  Google Scholar 

  38. D.R. Hines, V.W. Ballarotto, E.D. Williams, Y. Shao, S.A. Solin, Transfer printing methods for the fabrication of flexible organic electronics. J. Appl. Phys. 101(2), 024503 (2007)

    Article  Google Scholar 

  39. J. Zaumseil et al., Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3(9), 1223–1227 (2003)

    Article  Google Scholar 

  40. J.-H. Ahn et al., Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90(21), 213501 (2007)

    Article  Google Scholar 

  41. D.-H. Kim et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. 105(48), 18675–18680 (2008)

    Article  Google Scholar 

  42. A. Perl, D.N. Reinhoudt, J. Huskens, Microcontact printing: limitations and achievements. Adv. Mater. 21(22), 2257–2268 (2009)

    Article  Google Scholar 

  43. S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015)

    Article  Google Scholar 

  44. R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Large area electronics using printing methods. Proc. IEEE 93(7), 1321–1329 (2005)

    Article  Google Scholar 

  45. J. Zaumseil, T. Someya, Z. Bao, Y.-L. Loo, R. Cirelli, J.A. Rogers, Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 82(5), 793–795 (2003)

    Article  Google Scholar 

  46. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)

    Article  Google Scholar 

  47. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)

    Article  Google Scholar 

  48. S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997)

    Article  Google Scholar 

  49. D.J. Resnick, S.V. Sreenivasan, C.G. Willson, Step & flash imprint lithography. Mater. Today 8(2), 34–42 (2005)

    Article  Google Scholar 

  50. J. Wang, X. Sun, L. Chen, S.Y. Chou, Direct nanoimprint of submicron organic light-emitting structures. Appl. Phys. Lett. 75(18), 2767–2769 (1999)

    Article  Google Scholar 

  51. P. Maury et al., Roll-to-roll UV imprint lithography for flexible electronics. Microelectron. Eng. 88(8), 2052–2055 (2011)

    Article  Google Scholar 

  52. J. Han, S. Choi, J. Lim, B.S. Lee, S. Kang, Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography. J. Phys. Appl. Phys. 42(11), 115503 (2009)

    Article  Google Scholar 

  53. S.H. Ahn, L.J. Guo, High-Speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20(11), 2044–2049 (2008)

    Article  Google Scholar 

  54. H. Gold et al., Self-aligned flexible organic thin-film transistors with gates patterned by nano-imprint lithography. Org. Electron. 22, 140–146 (2015)

    Article  Google Scholar 

  55. A. Larmagnac, S. Eggenberger, H. Janossy, J. Vörös, Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 4 (2014)

    Google Scholar 

  56. S. Khan, W. Dang, L. Lorenzelli, R. Dahiya, Flexible pressure sensors based on screen-printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs. IEEE Trans. Semicond. Manuf. 28(4), 486–493 (2015)

    Article  Google Scholar 

  57. S. Khan, S. Tinku, L. Lorenzelli, R.S. Dahiya, Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites. IEEE Sens. J. 15(6), 3146–3155 (2015)

    Article  Google Scholar 

  58. J. Ping, Y. Wang, Y. Ying, J. Wu, Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal. Chem. 84(7), 3473–3479 (2012)

    Article  Google Scholar 

  59. D. Numakura, Advanced screen printing ‘practical approaches for printable & flexible electronics’, in 2008 3rd International Microsystems, Packaging, Assembly Circuits Technology Conference (2008), pp. 205–208

    Google Scholar 

  60. R. Soukup, A. Hamáček, J. Řeboun, Organic based sensors: Novel screen printing technique for sensing layers deposition, in 2012 35th International Spring Seminar on Electronics Technology (2012), pp. 19–24

    Google Scholar 

  61. G.E. Jabbour, R. Radspinner, N. Peyghambarian, Screen printing for the fabrication of organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 7(5), 769–773 (2001)

    Article  Google Scholar 

  62. Y. Kim, H. Kim, H.J. Yoo, Electrical characterization of screen-printed circuits on the fabric. IEEE Trans. Adv. Packag. 33(1), 196–205 (2010)

    MathSciNet  Google Scholar 

  63. B. Karaguzel et al., Flexible, durable printed electrical circuits. J. Text. Inst. 100(1), 1–9 (2009)

    Article  Google Scholar 

  64. J. Chang, X. Zhang, T. Ge, J. Zhou, Fully printed electronics on flexible substrates: high gain amplifiers and DAC. Org. Electron. 15(3), 701–710 (2014)

    Article  Google Scholar 

  65. G.D. Martin, S.D. Hoath, I.M. Hutchings, Inkjet printing—the physics of manipulating liquid jets and drops. J. Phys: Conf. Ser. 105(1), 012001 (2008)

    Google Scholar 

  66. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)

    Article  Google Scholar 

  67. Y.-F. Liu, W.-S. Hwang, Y.-F. Pai, M.-H. Tsai, Low temperature fabricated conductive lines on flexible substrate by inkjet printing. Microelectron. Reliab. 52(2), 391–397 (2012)

    Article  Google Scholar 

  68. D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)

    Article  Google Scholar 

  69. J. Stringer, B. Derby, Formation and stability of lines produced by inkjet printing. Langmuir 26(12), 10365–10372 (2010)

    Article  Google Scholar 

  70. E. Fribourg-Blanc, D.M.T. Dang, C.M. Dang, Characterization of silver nanoparticle based inkjet printed lines. Microsyst. Technol. 19(12), 1961–1971 (2013)

    Article  Google Scholar 

  71. T.H.J. van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20(2), 343–345 (2008)

    Article  Google Scholar 

  72. B.J. Kang, J.H. Oh, Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate. Thin Solid Films 518(10), 2890–2896 (2010)

    Article  Google Scholar 

  73. J. Perelaer et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446–8453 (2010)

    Article  Google Scholar 

  74. A. Chiolerio et al., Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron. Eng. 88(8), 2481–2483 (2011)

    Article  Google Scholar 

  75. S. Chung, S.O. Kim, S.K. Kwon, C. Lee, Y. Hong, All-inkjet-printed organic thin-film transistor inverter on flexible plastic substrate. IEEE Electron Device Lett. 32(8), 1134–1136 (2011)

    Article  Google Scholar 

  76. I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)

    Article  Google Scholar 

  77. S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuators Phys. 134(1), 161–168 (2007)

    Article  Google Scholar 

  78. D. Tobjörk et al., IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520(7), 2949–2955 (2012)

    Article  Google Scholar 

  79. P.J. Smith, D.-Y. Shin, J.E. Stringer, B. Derby, N. Reis, Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 41(13), 4153–4158 (2006)

    Article  Google Scholar 

  80. S. Jeong, H.C. Song, W.W. Lee, Y. Choi, B.-H. Ryu, Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film. J. Appl. Phys. 108(10), 102805 (2010)

    Article  Google Scholar 

  81. G. McKerricher, J.G. Perez, A. Shamim, Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias. IEEE Trans. Electron Devices 62(3), 1002–1009 (2015)

    Article  Google Scholar 

  82. J.F. Salmerón et al., Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. J. Electron. Mater. 43(2), 604–617 (2013)

    Article  Google Scholar 

  83. Y. Liu, T. Cui, K. Varahramyan, All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron. 47(9), 1543–1548 (2003)

    Article  Google Scholar 

  84. B. Chen, T. Cui, Y. Liu, K. Varahramyan, All-polymer RC filter circuits fabricated with inkjet printing technology. Solid-State Electron. 47(5), 841–847 (2003)

    Article  Google Scholar 

  85. D. Mager et al., An MRI receiver coil produced by inkjet printing directly on to a flexible substrate. IEEE Trans. Med. Imaging 29(2), 482–487 (2010)

    Article  Google Scholar 

  86. B.S. Cook, A. Shamim, Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate. IEEE Trans. Antennas Propag. 60(9), 4148–4156 (2012)

    Article  Google Scholar 

  87. L. Yang, A. Rida, R. Vyas, M.M. Tentzeris, RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 55(12), 2894–2901 (2007)

    Article  Google Scholar 

  88. R. Vyas et al., Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11(12), 3139–3152 (2011)

    Article  Google Scholar 

  89. H.-Y. Tseng, V. Subramanian, All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org. Electron. 12(2), 249–256 (2011)

    Article  Google Scholar 

  90. S. Chung, J. Jang, J. Cho, C. Lee, S.-K. Kwon, Y. Hong, All-inkjet-printed organic thin-film transistors with silver gate, source/drain electrodes. Jpn. J. Appl. Phys. 50(3S), 03CB05 (2011)

    Google Scholar 

  91. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Inkjet printing of polymer thin film transistors. Thin Solid Films 438–439, 279–287 (2003)

    Article  Google Scholar 

  92. H. Sirringhaus et al., High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499), 2123–2126 (2000)

    Article  Google Scholar 

  93. D.J. Lichtenwalner, A.E. Hydrick, A.I. Kingon, Flexible thin film temperature and strain sensor array utilizing a novel sensing concept. Sens. Actuators Phys. 135(2), 593–597 (2007)

    Article  Google Scholar 

  94. H. Al-Chami, E. Cretu, Inkjet printing of microsensors, in IEEE 15th International Mixed-Signals, Sensors, and Systems Test Workshop 2009 (IMS3TW ’09) (2009), pp. 1–6

    Google Scholar 

  95. P. Alpuim, V. Correia, E.S. Marins, J.G. Rocha, I.G. Trindade, S. Lanceros-Mendez, Piezoresistive silicon thin film sensor array for biomedical applications. Thin Solid Films 519(14), 4574–4577 (2011)

    Article  Google Scholar 

  96. F. Molina-Lopez, D. Briand, N.F. de Rooij, All additive inkjet printed humidity sensors on plastic substrate. Sens. Actuators B Chem. 166–167, 212–222 (2012)

    Article  Google Scholar 

  97. M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, B.B. Kale, Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B Chem. 178, 140–143 (2013)

    Article  Google Scholar 

  98. A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo, J.A. López-Villanueva, L.F. Capitan-Vallvey, A.J. Palma, Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing. Sens. Actuators B Chem. 195, 123–131 (2014)

    Article  Google Scholar 

  99. U. Altenberend et al., Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sens. Actuators B Chem. 187, 280–287 (2013)

    Article  Google Scholar 

  100. P. Sjöberg et al., Paper-based potentiometric ion sensors constructed on ink-jet printed gold electrodes. Sens. Actuators B Chem. 224, 325–332 (2016)

    Article  Google Scholar 

  101. N. Komuro, S. Takaki, K. Suzuki, D. Citterio, Inkjet printed (bio)chemical sensing devices. Anal. Bioanal. Chem. 405(17), 5785–5805 (2013)

    Article  Google Scholar 

  102. J. Wu et al., Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Lab Chip 15(3), 690–695 (2015)

    Article  Google Scholar 

  103. C.L. Kang, Y. Xu, K.L. Yung, W. Chen, Laser Induced Forward Transfer. Adv. Mater. Res. 591–593, 1135–1138 (2012)

    Article  Google Scholar 

  104. P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, J.L. Morenza, Laser-induced forward transfer: a direct-writing technique for biosensors preparation. J. Laser MicroNanoengineering 1(3), 236–242 (2006)

    Article  Google Scholar 

  105. C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, I. Zergioti, Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid. Nanofluidics 16(3), 493–500 (2013)

    Article  Google Scholar 

  106. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy. J. Phys. Chem. C 114(12), 5617–5636 (2010)

    Article  Google Scholar 

  107. C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 96(4), 041104 (2010)

    Article  Google Scholar 

  108. A.P. Suryavanshi, M.-F. Yu, Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl. Phys. Lett. 88(8), 083103 (2006)

    Article  Google Scholar 

  109. J. Hu, M.-F. Yu, Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329(5989), 313–316 (2010)

    Article  Google Scholar 

  110. B.Y. Ahn et al., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921), 1590–1593 (2009)

    Article  Google Scholar 

  111. E. Macdonald et al., 3D printing for the rapid prototyping of structural electronics. IEEE Access 2, 234–242 (2014)

    Article  Google Scholar 

  112. P. Mostafalu, M. Akbari, K.A. Alberti, Q. Xu, A. Khademhosseini, S.R. Sonkusale, A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng. 2, 16039 (2016)

    Article  Google Scholar 

  113. T.F. O’Connor, K.M. Rajan, A.D. Printz, D.J. Lipomi, Toward organic electronics with properties inspired by biological tissue. J. Mater. Chem. B 3(25), 4947–4952 (2015)

    Article  Google Scholar 

  114. L. Cai, C. Wang, Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10(1), 1–21 (2015)

    Article  Google Scholar 

  115. J. Li et al., Graphene film-functionalized germanium as a chemically stable, electrically conductive, and biologically active substrate. J. Mater. Chem. B 3(8), 1544–1555 (2015)

    Article  Google Scholar 

  116. S. Wang, Y. Huang, J.A. Rogers, Mechanical designs for inorganic stretchable circuits in soft electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 5(9), 1201–1218 (2015)

    Article  Google Scholar 

  117. C. Wang, J.-.C. Chien, K. Takei, T. Takahashi, J. Nah, A.M. Niknejad, Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12(3), 1527–1533 (2012)

    Google Scholar 

  118. C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 12, 899–904 (2013)

    Google Scholar 

  119. N. Chou, S. Yoo, S. Kim, A largely deformable surface type neural electrode array based on PDMS. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 544–553 (2013)

    Article  Google Scholar 

  120. S.J. Kim et al., The potential role of polymethyl methacrylate as a new packaging material for the implantable medical device in the bladder. Biomed. Res. Int. 2015, 852456 (2015)

    Google Scholar 

  121. W. J. Bae et al., AB222. Comparison of biocompatibility between PDMS and PMMA as packaging materials for the intravesical implantable device: changes of macrophage and macrophage migratory inhibitory factor. Transl. Androl. Urol. 3(Suppl 1) (2014)

    Google Scholar 

  122. B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31(13), 3449–3458 (2010)

    Article  Google Scholar 

  123. Y. Qin, M.M.R. Howlader, M.J. Deen, Y.M. Haddara, P.R. Selvaganapathy, Polymer integration for packaging of implantable sensors. Sens. Actuators B Chem. 202, 758–778 (2014)

    Article  Google Scholar 

  124. M.M.R. Howlader, M. Iwashita, K. Nanbu, K. Saijo, T. Suga, Enhanced Cu/LCP adhesion by pre-sputter cleaning prior to Cu deposition. IEEE Trans. Adv. Packag. 28(3), 495–502 (2005)

    Article  Google Scholar 

  125. Y. Zhang, D. Li, Y. Li, S. Zhang, M. Wang, Y. Li, High electric conductivity of liquid crystals formed by ordered self-assembly of nonionic surfactant N,N-bis(2-hydroxyethyl)dodecanamide in water. Soft Matter 11(9), 1762–1766 (2015)

    Article  Google Scholar 

  126. C.J. Bettinger, J.P. Bruggeman, A. Misra, J.T. Borenstein, R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30(17), 3050–3057 (2009)

    Article  Google Scholar 

  127. C.L.E. Nijst et al., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromol 8(10), 3067–3073 (2007)

    Article  Google Scholar 

  128. M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Biodegradable polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 805–813 (2008)

    Article  Google Scholar 

  129. A. Campana, T. Cramer, D.T. Simon, M. Berggren, F. Biscarini, Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26(23), 3874–3878 (2014)

    Article  Google Scholar 

  130. G. Mattana, D. Briand, A. Marette, A. Vásquez Quintero, N.F. de Rooij, Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Org. Electron. 17, 77–86 (2015)

    Google Scholar 

  131. D.-H. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)

    Article  Google Scholar 

  132. Y. Liu et al., Highly flexible and lightweight organic solar cells on biocompatible silk fibroin. ACS Appl. Mater. Interfaces. 6(23), 20670–20675 (2014)

    Article  Google Scholar 

  133. C.J. Bettinger, Z. Bao, Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22(5), 651–655 (2010)

    Article  Google Scholar 

  134. M. Irimia-Vladu et al., Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24(3), 375–380 (2012)

    Article  Google Scholar 

  135. M. Irimia-Vladu, N.S. Sariciftci, S. Bauer, Exotic materials for bio-organic electronics. J. Mater. Chem. 21(5), 1350–1361 (2011)

    Article  Google Scholar 

  136. M. Irimia-Vladu et al., Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)

    Article  Google Scholar 

  137. T.K. Das, S. Prusty, Review on conducting polymers and their applications. Polym.-Plast. Technol. Eng. 51(14), 1487–1500 (2012)

    Article  Google Scholar 

  138. N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32(8–9), 876–921 (2007)

    Article  Google Scholar 

  139. S. Kim, J.-H. Kim, O. Jeon, I.C. Kwon, K. Park, Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 71(3), 420–430 (2009)

    Article  Google Scholar 

  140. J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33(4), 448–477 (2008)

    Article  Google Scholar 

  141. S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26(5), 1825–1832 (2011)

    Article  Google Scholar 

  142. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    Article  Google Scholar 

  143. C.K. Chiang et al., Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)

    Article  Google Scholar 

  144. C.K. Chiang, S.C. Gau, C.R.F. Jr, Y.W. Park, A.G. MacDiarmid, A.J. Heeger, Polyacetylene, (CH)x: n-type and p-type doping and compensation. Appl. Phys. Lett. 33(1), 18–20 (1978)

    Article  Google Scholar 

  145. S. Stassi, V. Cauda, G. Canavese, C.F. Pirri, Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14(3), 5296–5332 (2014)

    Article  Google Scholar 

  146. C. Li, P.M. Wu, S. Lee, A. Gorton, M.J. Schulz, C.H. Ahn, Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromechanical Syst. 17(2), 334–341 (2008)

    Article  Google Scholar 

  147. V. Maheshwari, R.F. Saraf, High-resolution thin-film device to sense texture by touch. Science 312(5779), 1501–1504 (2006)

    Article  Google Scholar 

  148. T. Nelson, R. vanDover, S. Jin, S. Hackwood, G. Beni, Shear-sensitive magnetoresistive robotic tactile sensor. IEEE Trans. Magn. 22(5), 394–396 (1986)

    Google Scholar 

  149. G.M. Krishna, K. Rajanna, Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 4(5), 691–697 (2004)

    Article  Google Scholar 

  150. S.C.B. Mannsfeld et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010)

    Article  Google Scholar 

  151. J.A. Dobrzynska, M.A.M. Gijs, Flexible polyimide-based force sensor. Sens. Actuators Phys. 173(1), 127–135 (2012)

    Article  Google Scholar 

  152. Y. Zhou, C.-W. Chiu, H. Liang, Interfacial structures and properties of organic materials for biosensors: an overview. Sensors 12(11), 15036–15062 (2012)

    Article  Google Scholar 

  153. J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2(1), 19–24 (2003)

    Article  Google Scholar 

  154. M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)

    Article  Google Scholar 

  155. D.D. Borole, U.R. Kapadi, P.P. Mahulikar, D.G. Hundiwale, Conducting polymers: an emerging field of biosensors. Des. Monomers Polym. 9(1), 1–11 (2006)

    Article  Google Scholar 

  156. C.-C. Wen, W. Fang, Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane. Sens. Actuators Phys. 145–146, 14–22 (2008)

    Article  Google Scholar 

  157. B.J. Kane, M.R. Cutkosky, G.T.A. Kovacs, A traction stress sensor array for use in high-resolution robotic tactile imaging. J. Microelectromechanical Syst. 9(4), 425–434 (2000)

    Article  Google Scholar 

  158. H. Hu, K. Shaikh, C. Liu, Super flexible sensor skin using liquid metal as interconnect, 2007 in IEEE Sensors (2007), pp. 815–817

    Google Scholar 

  159. M.-Y. Cheng, C.-M. Tsao, Y.-Z. Lai, Y.-J. Yang, The development of a highly twistable tactile sensing array with stretchable helical electrodes. Sens. Actuators Phys. 166(2), 226–233 (2011)

    Article  Google Scholar 

  160. Y.-J. Yang et al., An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators Phys. 143(1), 143–153 (2008)

    Article  Google Scholar 

  161. B. Dong, M. Krutschke, X. Zhang, L. Chi, H. Fuchs, Fabrication of polypyrrole wires between microelectrodes. Small 1(5), 520–524 (2005)

    Article  Google Scholar 

  162. B. Dong, D.Y. Zhong, L.F. Chi, H. Fuchs, Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 17(22), 2736–2741 (2005)

    Article  Google Scholar 

  163. A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)

    Article  Google Scholar 

  164. A. Nathan et al., Flexible electronics: the next ubiquitous platform. Proc. IEEE. 100(Special Centennial Issue), May 2012, pp. 1486–1517

    Google Scholar 

  165. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  166. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  167. F. Withers et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)

    Article  Google Scholar 

  168. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  Google Scholar 

  169. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  Google Scholar 

  170. S.-K. Lee et al., All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12(7), 3472–3476 (2012)

    Article  Google Scholar 

  171. S.-K. Lee et al., Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11(11), 4642–4646 (2011)

    Article  Google Scholar 

  172. S. Riazimehr et al., Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid-State Electron. 115(Part B), 207–212 (2016)

    Google Scholar 

  173. M.C. Lemme et al., Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)

    Article  Google Scholar 

  174. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)

    Article  Google Scholar 

  175. X. Gan et al., Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)

    Article  Google Scholar 

  176. A. Pospischil et al., CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)

    Article  Google Scholar 

  177. F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014)

    Article  Google Scholar 

  178. D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9(8), 1188–1205 (2013)

    Article  Google Scholar 

  179. L. Buglione, E.L.K. Chng, A. Ambrosi, Z. Sofer, M. Pumera, Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochem. Commun. 14(1), 5–8 (2012)

    Article  Google Scholar 

  180. A. Bonanni, M. Pumera, High-resolution impedance spectroscopy for graphene characterization. Electrochem. Commun. 26, 52–54 (2013)

    Article  Google Scholar 

  181. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)

    Article  Google Scholar 

  182. S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)

    Article  Google Scholar 

  183. T. Kobayashi et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)

    Article  Google Scholar 

  184. L. Gao, G.-X. Ni, Y. Liu, B. Liu, A.H. Castro Neto, K.P. Loh, Face-to-face transfer of wafer-scale graphene films. Nature 505(7482), 190–194 (2014)

    Google Scholar 

  185. C. Yan, J.H. Cho, J.-H. Ahn, Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16), 4870–4882 (2012)

    Article  Google Scholar 

  186. K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    Article  Google Scholar 

  187. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser Scribing of High-Performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)

    Article  Google Scholar 

  188. V.L. Solozhenko, A.G. Lazarenko, J.-P. Petitet, A.V. Kanaev, Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62(7), 1331–1334 (2001)

    Article  Google Scholar 

  189. H. Amano, T. Asahi, I. Akasaki, Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 29(Part 2, No. 2), L205–L206 (1990)

    Google Scholar 

  190. K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)

    Article  Google Scholar 

  191. M. Wang et al., A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)

    Article  Google Scholar 

  192. C.R. Dean et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)

    Article  Google Scholar 

  193. K.K. Kim et al., Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)

    Article  Google Scholar 

  194. Z. Liu et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8(2), 119–124 (2013)

    Article  Google Scholar 

  195. E. Kim, T. Yu, E.S. Song, B. Yu, Chemical vapor deposition-assembled graphene field-effect transistor on hexagonal boron nitride. Appl. Phys. Lett. 98(26), 262103 (2011)

    Article  Google Scholar 

  196. J. Lee et al., High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron Device Lett. 34(2), 172–174 (2013)

    Article  Google Scholar 

  197. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35(12), 6195–6202 (1987)

    Article  Google Scholar 

  198. C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, H. Liu, Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)

    Article  Google Scholar 

  199. C. Lee et al., Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)

    Article  Google Scholar 

  200. J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969)

    Article  Google Scholar 

  201. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  Google Scholar 

  202. N.R. Pradhan et al., Field-effect transistors based on few-layered α-MoTe2. ACS Nano. 8(6), 5911–5920 (2014)

    Article  Google Scholar 

  203. G.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano. 7(9), 7931–7936 (2013)

    Article  Google Scholar 

  204. G. Fiori et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)

    Article  Google Scholar 

  205. D. B. Velusamy et al., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 6, 8063 (2015)

    Google Scholar 

  206. C. Kim, T.P. Nguyen, Q.V. Le, J.-M. Jeon, H.W. Jang, S.Y. Kim, Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 25(28), 4512–4519 (2015)

    Article  Google Scholar 

  207. A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and applications for large area electronics: solution-based approaches, Chem. Rev. 110(1), 3–24 (2010)

    Google Scholar 

  208. S.H. Chang, C.H. Chiang, F.S. Kao, C.L. Tien, C.G. Wu, Unraveling the enhanced electrical conductivity of PEDOT:PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 6(4), 1–7 (2014)

    Article  Google Scholar 

  209. H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39, 2643–2666 (2010)

    Google Scholar 

  210. T.W. Kelley et al., Recent progress in organic electronics: materials, devices, and processes. Chem. Mater. 16(23), 4413–4422 (2004)

    Article  Google Scholar 

  211. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Organic electronics on paper. Appl. Phys. Lett. 84(14), 2673–2675 (2004)

    Article  Google Scholar 

  212. V. Benfenati et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)

    Article  MathSciNet  Google Scholar 

  213. M. Katsuhara et al., 44.2: Distinguished Paper: a reliable flexible OLED display with an OTFT backplane manufactured using a scalable process. SID Symp. Dig. Tech. Pap. 40(1), 656–659 (2009)

    Article  Google Scholar 

  214. T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22 (2010)

    Google Scholar 

  215. A.S. Azam, M. Boukadoum, R. Izquierdo, A. Acharya, M. Packirisamy, Integrated multifunctional fluorescence biosensor based on OLED technology, in 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference (NEWCAS-TAISA 2008) (2008), pp. 173–176

    Google Scholar 

  216. K.L. Lin, K. Jain, Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation. IEEE Electron Device Lett. 30(1), 14–17 (2009)

    Article  Google Scholar 

  217. K.-S. Kim, K.-H. Jung, S.-B. Jung, Design and fabrication of screen-printed silver circuits for stretchable electronics. Microelectron. Eng. 120, 216–220 (2014)

    Article  Google Scholar 

  218. H.J. Kim, T. Maleki, P. Wei, B. Ziaie, A Biaxial Stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromechanical Syst. 18(1), 138–146 (2009)

    Article  Google Scholar 

  219. H. Hocheng, C.-M. Chen, Design, fabrication and failure analysis of stretchable electrical routings. Sensors 14(7), 11855–11877 (2014)

    Article  Google Scholar 

  220. T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27(22), 3349–3376 (2015)

    Article  Google Scholar 

  221. Y. Zhang et al., Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24(14), 2028–2037 (2014)

    Article  Google Scholar 

  222. J. Lee et al., Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23(8), 986–991 (2011)

    Article  Google Scholar 

  223. C. Yu, H. Jiang, Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films 519(2), 818–822 (2010)

    Article  Google Scholar 

  224. S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25(4), 179–181 (2004)

    Article  Google Scholar 

  225. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, I.D. Wolf, Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans. Electron Devices 58(8), 2680–2688 (2011)

    Article  Google Scholar 

  226. Y. Zhang et al., Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9(33), 8062–8070 (2013)

    Article  Google Scholar 

  227. Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I. De Wolf, The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnects. Thin Solid Films 519(7), 2225–2234 (2011)

    Article  Google Scholar 

  228. Mario Gonzalez, Fabrice Axisa, Frederick Bossuyt, Yung-Yu. Hsu, Bart Vandevelde, Jan Vanfleteren, Design and performance of metal conductors for stretchable electronic circuits. Circuit World 35(1), 22–29 (2009)

    Article  Google Scholar 

  229. M. Gonzalez, F. Axisa, M.V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48(6), 825–832 (2008)

    Article  Google Scholar 

  230. O. van der Sluis, Y.Y. Hsu, P.H.M. Timmermans, M. Gonzalez, J.P.M. Hoefnagels, Stretching-induced interconnect delamination in stretchable electronic circuits. J. Phys. Appl. Phys. 44(3), 034008 (2011)

    Article  Google Scholar 

  231. S. Xu et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)

    Article  Google Scholar 

  232. Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I.D. Wolf, The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromechanics Microengineering 20(7), 075036 (2010)

    Article  Google Scholar 

  233. D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)

    Article  Google Scholar 

  234. A.M. Hussain, E.B. Lizardo, G.A. Torres Sevilla, J.M. Nassar, M.M. Hussain, Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy. Adv. Healthcare Mater. 4(5), 665–673 (2015)

    Article  Google Scholar 

  235. J.A. Fan et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)

    Google Scholar 

  236. L. Bowman, J.D. Meindl, The packaging of implantable integrated sensors. IEEE Trans. Biomed. Eng. BME-33(2), 248–255 (1986)

    Google Scholar 

  237. D.F. Williams, Biocompatibility of Clinical Implant Materials (CRC Press, Boca Raton, 1981)

    Google Scholar 

  238. G. Jiang, D.D. Zhou, Technology advances and challenges in hermetic packaging for implantable medical devices, in Implantable Neural Prostheses 2, ed. by D. Zhou, E. Greenbaum (Springer, New York, 2009), pp. 27–61

    Chapter  Google Scholar 

  239. A. Cavallini et al., A subcutaneous biochip for remote monitoring of human metabolism: packaging and biocompatibility assessment. IEEE Sens. J. 15(1), 417–424 (2015)

    Article  Google Scholar 

  240. T.J. Harpster, S.A. Nikles, M.R. Dokmeci, K. Najafi, Long-term hermeticity and biological performance of anodically bonded glass-silicon implantable packages. IEEE Trans. Device Mater. Reliab. 5(3), 458–466 (2005)

    Article  Google Scholar 

  241. K. Najafi, Packaging of implantable microsystems, in 2007 IEEE Sensors (2007), pp. 58–63

    Google Scholar 

  242. K. Najafi, in Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS (2003), pp. 1–19

    Google Scholar 

  243. T.J. Harpster, S. Hauvespre, M.R. Dokmeci, K. Najafi, A passive humidity monitoring system for in situ remote wireless testing of micropackages. J. Microelectromechanical Syst. 11(1), 61–67 (2002)

    Article  Google Scholar 

  244. T. Stieglitz, Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst. Technol. 16(5), 723–734 (2010)

    Article  Google Scholar 

  245. M. Schuettler, J.S. Ordonez, T.S. Santisteban, A. Schatz, J. Wilde, T. Stieglitz, Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 1585–1588

    Google Scholar 

  246. M. Schuettler, A. Schatz, J.S. Ordonez, T. Stieglitz, Ensuring minimal humidity levels in hermetic implant housings, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2011), pp. 2296–2299

    Google Scholar 

  247. J.S. Ordonez, M. Schuettler, M. Ortmanns, T. Stieglitz, A 232-channel retinal vision prosthesis with a miniaturized hermetic package, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 2796–2799

    Google Scholar 

  248. N. Saeidi, M. Schuettler, A. Demosthenous, N. Donaldson, Technology for integrated circuit micropackages for neural interfaces, based on gold–silicon wafer bonding. J. Micromechanics Microengineering 23(7), 075021 (2013)

    Article  Google Scholar 

  249. N. Saeidi, J. Strutwolf, A. Marechal, A. Demosthenous, N. Donaldson, A capacitive humidity sensor suitable for CMOS integration. IEEE Sens. J. 13(11), 4487–4495 (2013)

    Article  Google Scholar 

  250. N. Saeidi, A. Demosthenous, N. Donaldson, J. Alderman, Design and fabrication of corrosion and humidity sensors for performance evaluation of chip scale hermetic packages for biomedical implantable devices, in European Microelectronics and Packaging Conference 2009 (EMPC 2009) (2009), pp. 1–4

    Google Scholar 

  251. A. Ivorra et al., Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 19(4), 391–399 (2003)

    Article  MathSciNet  Google Scholar 

  252. R. Gómez et al., A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices 8(1), 43–49 (2006)

    Article  Google Scholar 

  253. M. Tijero et al., SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009)

    Article  Google Scholar 

  254. A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J. Biomed. Mater. Res. 37(3), 401–412 (1997)

    Article  Google Scholar 

  255. A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J. Biomed. Mater. Res. 40(4), 598–605 (1998)

    Article  Google Scholar 

  256. T. Trantidou, D.J. Payne, V. Tsiligkiridis, Y.-C. Chang, C. Toumazou, T. Prodromakis, The dual role of Parylene C in chemical sensing: acting as an encapsulant and as a sensing membrane for pH monitoring applications. Sens. Actuators B Chem. 186, 1–8 (2013)

    Article  Google Scholar 

  257. G.S. Prihandana et al., Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices. J. Biomed. Mater. Res. B Appl. Biomater. 103(6), 1180–1187 (2015)

    Article  Google Scholar 

  258. M.M.R. Howlader, A.U. Alam, R.P. Sharma, M.J. Deen, Materials analyses and electrochemical impedance of implantable metal electrodes. Phys. Chem. Chem. Phys. 17(15), 10135–10145 (2015)

    Article  Google Scholar 

  259. M. Schuettler, T. Stieglitz, Microassembly and micropackaging of implantable systems, in Implantable Sensor Systems for Medical Applications (Woodhead Publishing, Oxford, 2013), pp. 108–149

    Google Scholar 

  260. M. Dokmeci, K. Najafi, A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages. J. Microelectromechanical Syst. 10(2), 197–204 (2001)

    Article  Google Scholar 

  261. D. Cirmirakis, A. Demosthenous, N. Saeidi, N. Donaldson, Humidity-to-Frequency sensor in cmos technology with wireless readout. IEEE Sens. J. 13(3), 900–908 (2013)

    Article  Google Scholar 

  262. G.S. Wilson, M. Ammam, In vivo biosensors. FEBS J. 274(21), 5452–5461 (2007)

    Article  Google Scholar 

  263. G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)

    Article  Google Scholar 

  264. S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)

    Article  Google Scholar 

  265. C.N. Kotanen, A. Guiseppi-Elie, Monitoring systems and quantitative measurement of biomolecules for the management of Trauma. Biomed. Microdevices 15(3), 561–577 (2013)

    Article  Google Scholar 

  266. J.H. Shin, M.H. Schoenfisch, Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst 131(5), 609–615 (2006)

    Article  Google Scholar 

  267. M. Frost, M.E. Meyerhoff, In vivo chemical sensors: tackling biocompatibility. Anal. Chem. 78(21), 7370–7377 (2006)

    Article  Google Scholar 

  268. Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D.J. Burgess, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2(6), 1003–1015 (2008)

    Article  Google Scholar 

  269. L.A. Geddes, R. Roeder, Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng. 31(7), 879–890 (2003)

    Google Scholar 

  270. A. Radu et al., Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Anal. Methods 2(10), 1490–1498 (2010)

    Article  Google Scholar 

  271. R.C. Mercado, F. Moussy, In vitro and in vivo mineralization of Nafion membrane used for implantable glucose sensors. Biosens. Bioelectron. 13(2), 133–145 (1998)

    Article  Google Scholar 

  272. S.R. Shah, A.M. Tatara, R.N. D’Souza, A.G. Mikos, F.K. Kasper, Evolving strategies for preventing biofilm on implantable materials. Mater. Today 16(5), 177–182 (2013)

    Article  Google Scholar 

  273. J.D. Patel, M. Ebert, R. Ward, J.M. Anderson, S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J. Biomed. Mater. Res. A 80A(3), 742–751 (2007)

    Article  Google Scholar 

  274. E.M. Hetrick, M.H. Schoenfisch, Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35(9), 780–789 (2006)

    Article  Google Scholar 

  275. J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res. 31(1), 81–110 (2001)

    Article  Google Scholar 

  276. J.A. Jones et al., Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A 83A(3), 585–596 (2007)

    Article  Google Scholar 

  277. E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure—property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18), 5605–5620 (2001)

    Article  Google Scholar 

  278. N. Tirelli, M.P. Lutolf, A. Napoli, J.A. Hubbell, Poly(ethylene glycol) block copolymers. Rev. Mol. Biotechnol. 90(1), 3–15 (2002)

    Article  Google Scholar 

  279. I.A. Silver, R.J. Murrills, D.J. Etherington, Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175(2), 266–276 (1988)

    Article  Google Scholar 

  280. A. Koh, S.P. Nichols, M.H. Schoenfisch, Glucose sensor membranes for mitigating the foreign body response. J. Diabetes Sci. Technol. 5(5), 1052–1059 (2011)

    Article  Google Scholar 

  281. R.D. Jayant, M.J. McShane, R. Srivastava, In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int. J. Pharm. 403(1–2), 268–275 (2011)

    Article  Google Scholar 

  282. Y. Wang, F. Papadimitrakopoulos, D.J. Burgess, Polymeric ‘smart’ coatings to prevent foreign body response to implantable biosensors. J. Controlled Release 169(3), 341–347 (2013)

    Article  Google Scholar 

  283. J.H. Shin, S.M. Marxer, M.H. Schoenfisch, Nitric oxide-releasing sol–gel particle/polyurethane glucose biosensors. Anal. Chem. 76(15), 4543–4549 (2004)

    Article  Google Scholar 

  284. G.S. Wilson, M.A. Johnson, In-vivo electrochemistry: what can we learn about living systems?. Chem. Rev. 108(7), 2462–2481 (2008)

    Google Scholar 

  285. D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39(2), 266–276 (1998)

    Article  Google Scholar 

  286. B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6(1), 41–75 (2004)

    Article  Google Scholar 

  287. Use of International Standard ISO 10993-1, ‘Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process’: Guidance for Industry and Food and Drug Administration Staff. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, 16 June 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kassanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kassanos, P., Anastasova, S., Chen, C., Yang, GZ. (2018). Sensor Embodiment and Flexible Electronics. In: Yang, GZ. (eds) Implantable Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-69748-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69748-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69747-5

  • Online ISBN: 978-3-319-69748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics