Sensor Embodiment and Flexible Electronics

  • P. Kassanos
  • S. Anastasova
  • C. M. Chen
  • Guang-Zhong Yang


Sensor embodiment and packaging are particularly important for implantable systems. One key element is the development of flexible electronics. Traditional electronics, based on rigid silicon technologies, is associated with a number of intrinsic disadvantages. The inherent brittleness of inorganic semiconductors and stiffness of Si wafer-based devices represent a major issue when interfaced with tissues. This is because our internal organs are complex and they have innate responses to reject foreign bodies. Furthermore, tissues are soft, and they undergo constant motion and deformation. In this chapter, we will discuss current progress in flexible printed circuit board (FPC/FPCB) technologies and provide a review of new fabrication techniques and materials for making soft devices and interconnects suitable for implantable applications. Issues related to geometrical designs for mechanically resilient flexible devices, hermetic packaging, biocompatibility and encapsulation are addressed.

List of Acronyms


3D multifunctional integumentary membrane


Application-specific integrated circuit


Computer aided design


Chemically derived graphene


Combination of interconnects and electronics


Complementary metal-oxide-semiconductor


Carbon nanotubes


Conductive polymer


Conductive polymer composite


Chemical vapor deposition


Digital to analog converter












Foreign body response


Food and Drug Administration


Finite element method


Field-effect transistor


Flexible letterpress stamping


Few layer graphene


Flexible printed circuit board


Flame retardant type four




Glucose oxidase


Graphene oxide


Hexagonal boron nitride


Hydrogen fluoride




Integrated circuit


Intrinsically conductive polymer


International Organization for Standardization


Liquid crystal polymer


Light emitting diode


Micro contact printing




Multilevel matrix deposition


Micromolding in capillaries


Micro-opto-electro-mechanical system




Metal-oxide-semiconductor field-effect transistor


Magnetic resonance imaging






Nanoimprint lithography




Nitric oxide




Organic field-effect transistor


Organic light emitting diode


Organic thin-film transistors


Organic vapor phase deposition








Phosphate buffered saline




Printed circuit board




Platelet-derived growth factor




Poly (3,4-ethylene dioxythiophene)


Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate




Polyethylene glycol


Poly(ethylene naphthalate)


Polyethylene oxide








Poly(lactic-co-glycolic acid)


Poly (methylmethacrylate)












Polyvinyl alcohol


Physical vapor deposition


Radio frequency


Relative humidity


Reduced graphene oxide


Surface activated bonding


Self-assembled monolayer


Scanning electron microscope


Shape-memory polymer


Silicon on insulator


Surface plasmon resonancel


Transition metal dichalcogenides


Thermoplastic polyurethane


Tissue response modifier


Under bump metallization






Vascular endothelial growth factor


Vacuum thermal evaporation


  1. 1.
    A. Bozkurt, A. Lal, Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system. Sens. Actuators Phys. 169(1), 89–97 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Kassanos, H.M.D. Ip, G.-Z. Yang, A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (2015), pp. 1–6Google Scholar
  3. 3.
    C. Kallmayer, E. Simon, Large area sensor integration in textiles, in 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD) (2012), pp. 1–5Google Scholar
  4. 4.
    A. Nelson et al., Wearable multi-sensor gesture recognition for paralysis patients, in 2013 IEEE SENSORS (2013), pp. 1–4Google Scholar
  5. 5.
    R.G. Haahr et al., An electronic patch for wearable health monitoring by reflectance pulse oximetry. IEEE Trans. Biomed. Circuits Syst. 6(1), 45–53 (2012)CrossRefGoogle Scholar
  6. 6.
    C.M. Chen, R. Kwasnicki, B. Lo, G.-Z. Yang, Wearable tissue oxygenation monitoring sensor and a forearm vascular phantom design for data validation, in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (2014), pp. 64–68Google Scholar
  7. 7.
    R. Dekker et al., Living chips and chips for the living, in 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2012), pp. 1–9Google Scholar
  8. 8.
    J. Reeder et al., Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26(29), 4967–4973 (2014)CrossRefGoogle Scholar
  9. 9.
    Doppler Blood Flow Monitor, Cook medical. [Online]. Available: Accessed: 22 Sep 2016
  10. 10.
    L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014)Google Scholar
  11. 11.
    D.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011)CrossRefGoogle Scholar
  12. 12.
    W.-H. Yeo et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Tao et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. 111(49), 17385–17389 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)CrossRefGoogle Scholar
  15. 15.
    S.P. Lee et al., Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proc. IEEE 103(4), 682–689 (2015)CrossRefGoogle Scholar
  16. 16.
    D.-H. Kim et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10(4), 316–323 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Yokota et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016)CrossRefGoogle Scholar
  18. 18.
    S.-W. Hwang et al., A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)CrossRefGoogle Scholar
  19. 19.
    M.S. Mannoor et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Tao et al., Implantable, multifunctional, bioresorbable optics. Proc. Natl. Acad. Sci. 109(48), 19584–19589 (2012)CrossRefGoogle Scholar
  21. 21.
    D.-H. Kim et al., Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. 109(49), 19910–19915 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Xu et al., Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27(10), 1731–1737 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Park et al., Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv. Healthc. Mater. 3(4), 515–525 (2014)CrossRefGoogle Scholar
  24. 24.
    M.A. Deeds, P.A. Sandborn, MOEMS chip-level optical fiber interconnect. IEEE Trans. Adv. Packag. 28(4), 612–618 (2005)CrossRefGoogle Scholar
  25. 25.
    M. Lapisa, G. Stemme, F. Niklaus, Wafer-Level Heterogeneous Integration for MOEMS, MEMS, and NEMS. IEEE J. Sel. Top. Quantum Electron. 17(3), 629–644 (2011)CrossRefGoogle Scholar
  26. 26.
    R. Özgün, B.J. Jung, B.M. Dhar, H.E. Katz, A.G. Andreou, Silicon-on-insulator (SOI) integration for organic field effect transistor (OFET) based circuits, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011), pp. 2253–2256Google Scholar
  27. 27.
    M. Luo, A.W. Martinez, C. Song, F. Herrault, M.G. Allen, A Microfabricated wireless RF pressure sensor made completely of biodegradable materials. J. Microelectromechanical Syst. 23(1), 4–13 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Adrega, S.P. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J. Micromechanics Microengineering 20(5), 055025 (2010)CrossRefGoogle Scholar
  29. 29.
    X. Hu, P. Krull, B. de Graff, K. Dowling, J.A. Rogers, W.J. Arora, Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 23(26), 2933–2936 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1(3), 201–207 (2006)CrossRefGoogle Scholar
  31. 31.
    M.J. Allen et al., Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)CrossRefGoogle Scholar
  32. 32.
    X. Liang, Z. Fu, S.Y. Chou, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRefGoogle Scholar
  33. 33.
    A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284–5318 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Kim, P.E. Burrows, S.R. Forrest, Micropatterning of organic electronic devices by cold-welding. Science 288(5467), 831–833 (2000)CrossRefGoogle Scholar
  35. 35.
    C. Kim, S.R. Forrest, Fabrication of organic light-emitting devices by low-pressure cold welding. Adv. Mater. 15(6), 541–545 (2003)Google Scholar
  36. 36.
    S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)Google Scholar
  37. 37.
    C. Kim, M. Shtein, S.R. Forrest, Nanolithography based on patterned metal transfer and its application to organic electronic devices. Appl. Phys. Lett. 80(21), 4051–4053 (2002)CrossRefGoogle Scholar
  38. 38.
    D.R. Hines, V.W. Ballarotto, E.D. Williams, Y. Shao, S.A. Solin, Transfer printing methods for the fabrication of flexible organic electronics. J. Appl. Phys. 101(2), 024503 (2007)CrossRefGoogle Scholar
  39. 39.
    J. Zaumseil et al., Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3(9), 1223–1227 (2003)CrossRefGoogle Scholar
  40. 40.
    J.-H. Ahn et al., Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90(21), 213501 (2007)CrossRefGoogle Scholar
  41. 41.
    D.-H. Kim et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. 105(48), 18675–18680 (2008)CrossRefGoogle Scholar
  42. 42.
    A. Perl, D.N. Reinhoudt, J. Huskens, Microcontact printing: limitations and achievements. Adv. Mater. 21(22), 2257–2268 (2009)CrossRefGoogle Scholar
  43. 43.
    S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015)CrossRefGoogle Scholar
  44. 44.
    R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Large area electronics using printing methods. Proc. IEEE 93(7), 1321–1329 (2005)CrossRefGoogle Scholar
  45. 45.
    J. Zaumseil, T. Someya, Z. Bao, Y.-L. Loo, R. Cirelli, J.A. Rogers, Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 82(5), 793–795 (2003)CrossRefGoogle Scholar
  46. 46.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)CrossRefGoogle Scholar
  47. 47.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)CrossRefGoogle Scholar
  48. 48.
    S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997)CrossRefGoogle Scholar
  49. 49.
    D.J. Resnick, S.V. Sreenivasan, C.G. Willson, Step & flash imprint lithography. Mater. Today 8(2), 34–42 (2005)CrossRefGoogle Scholar
  50. 50.
    J. Wang, X. Sun, L. Chen, S.Y. Chou, Direct nanoimprint of submicron organic light-emitting structures. Appl. Phys. Lett. 75(18), 2767–2769 (1999)CrossRefGoogle Scholar
  51. 51.
    P. Maury et al., Roll-to-roll UV imprint lithography for flexible electronics. Microelectron. Eng. 88(8), 2052–2055 (2011)CrossRefGoogle Scholar
  52. 52.
    J. Han, S. Choi, J. Lim, B.S. Lee, S. Kang, Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography. J. Phys. Appl. Phys. 42(11), 115503 (2009)CrossRefGoogle Scholar
  53. 53.
    S.H. Ahn, L.J. Guo, High-Speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20(11), 2044–2049 (2008)CrossRefGoogle Scholar
  54. 54.
    H. Gold et al., Self-aligned flexible organic thin-film transistors with gates patterned by nano-imprint lithography. Org. Electron. 22, 140–146 (2015)CrossRefGoogle Scholar
  55. 55.
    A. Larmagnac, S. Eggenberger, H. Janossy, J. Vörös, Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 4 (2014)Google Scholar
  56. 56.
    S. Khan, W. Dang, L. Lorenzelli, R. Dahiya, Flexible pressure sensors based on screen-printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs. IEEE Trans. Semicond. Manuf. 28(4), 486–493 (2015)CrossRefGoogle Scholar
  57. 57.
    S. Khan, S. Tinku, L. Lorenzelli, R.S. Dahiya, Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites. IEEE Sens. J. 15(6), 3146–3155 (2015)CrossRefGoogle Scholar
  58. 58.
    J. Ping, Y. Wang, Y. Ying, J. Wu, Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal. Chem. 84(7), 3473–3479 (2012)CrossRefGoogle Scholar
  59. 59.
    D. Numakura, Advanced screen printing ‘practical approaches for printable & flexible electronics’, in 2008 3rd International Microsystems, Packaging, Assembly Circuits Technology Conference (2008), pp. 205–208Google Scholar
  60. 60.
    R. Soukup, A. Hamáček, J. Řeboun, Organic based sensors: Novel screen printing technique for sensing layers deposition, in 2012 35th International Spring Seminar on Electronics Technology (2012), pp. 19–24Google Scholar
  61. 61.
    G.E. Jabbour, R. Radspinner, N. Peyghambarian, Screen printing for the fabrication of organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 7(5), 769–773 (2001)CrossRefGoogle Scholar
  62. 62.
    Y. Kim, H. Kim, H.J. Yoo, Electrical characterization of screen-printed circuits on the fabric. IEEE Trans. Adv. Packag. 33(1), 196–205 (2010)MathSciNetGoogle Scholar
  63. 63.
    B. Karaguzel et al., Flexible, durable printed electrical circuits. J. Text. Inst. 100(1), 1–9 (2009)CrossRefGoogle Scholar
  64. 64.
    J. Chang, X. Zhang, T. Ge, J. Zhou, Fully printed electronics on flexible substrates: high gain amplifiers and DAC. Org. Electron. 15(3), 701–710 (2014)CrossRefGoogle Scholar
  65. 65.
    G.D. Martin, S.D. Hoath, I.M. Hutchings, Inkjet printing—the physics of manipulating liquid jets and drops. J. Phys: Conf. Ser. 105(1), 012001 (2008)Google Scholar
  66. 66.
    B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRefGoogle Scholar
  67. 67.
    Y.-F. Liu, W.-S. Hwang, Y.-F. Pai, M.-H. Tsai, Low temperature fabricated conductive lines on flexible substrate by inkjet printing. Microelectron. Reliab. 52(2), 391–397 (2012)CrossRefGoogle Scholar
  68. 68.
    D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)CrossRefGoogle Scholar
  69. 69.
    J. Stringer, B. Derby, Formation and stability of lines produced by inkjet printing. Langmuir 26(12), 10365–10372 (2010)CrossRefGoogle Scholar
  70. 70.
    E. Fribourg-Blanc, D.M.T. Dang, C.M. Dang, Characterization of silver nanoparticle based inkjet printed lines. Microsyst. Technol. 19(12), 1961–1971 (2013)CrossRefGoogle Scholar
  71. 71.
    T.H.J. van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20(2), 343–345 (2008)CrossRefGoogle Scholar
  72. 72.
    B.J. Kang, J.H. Oh, Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate. Thin Solid Films 518(10), 2890–2896 (2010)CrossRefGoogle Scholar
  73. 73.
    J. Perelaer et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446–8453 (2010)CrossRefGoogle Scholar
  74. 74.
    A. Chiolerio et al., Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron. Eng. 88(8), 2481–2483 (2011)CrossRefGoogle Scholar
  75. 75.
    S. Chung, S.O. Kim, S.K. Kwon, C. Lee, Y. Hong, All-inkjet-printed organic thin-film transistor inverter on flexible plastic substrate. IEEE Electron Device Lett. 32(8), 1134–1136 (2011)CrossRefGoogle Scholar
  76. 76.
    I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)CrossRefGoogle Scholar
  77. 77.
    S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuators Phys. 134(1), 161–168 (2007)CrossRefGoogle Scholar
  78. 78.
    D. Tobjörk et al., IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520(7), 2949–2955 (2012)CrossRefGoogle Scholar
  79. 79.
    P.J. Smith, D.-Y. Shin, J.E. Stringer, B. Derby, N. Reis, Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 41(13), 4153–4158 (2006)CrossRefGoogle Scholar
  80. 80.
    S. Jeong, H.C. Song, W.W. Lee, Y. Choi, B.-H. Ryu, Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film. J. Appl. Phys. 108(10), 102805 (2010)CrossRefGoogle Scholar
  81. 81.
    G. McKerricher, J.G. Perez, A. Shamim, Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias. IEEE Trans. Electron Devices 62(3), 1002–1009 (2015)CrossRefGoogle Scholar
  82. 82.
    J.F. Salmerón et al., Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. J. Electron. Mater. 43(2), 604–617 (2013)CrossRefGoogle Scholar
  83. 83.
    Y. Liu, T. Cui, K. Varahramyan, All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron. 47(9), 1543–1548 (2003)CrossRefGoogle Scholar
  84. 84.
    B. Chen, T. Cui, Y. Liu, K. Varahramyan, All-polymer RC filter circuits fabricated with inkjet printing technology. Solid-State Electron. 47(5), 841–847 (2003)CrossRefGoogle Scholar
  85. 85.
    D. Mager et al., An MRI receiver coil produced by inkjet printing directly on to a flexible substrate. IEEE Trans. Med. Imaging 29(2), 482–487 (2010)CrossRefGoogle Scholar
  86. 86.
    B.S. Cook, A. Shamim, Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate. IEEE Trans. Antennas Propag. 60(9), 4148–4156 (2012)CrossRefGoogle Scholar
  87. 87.
    L. Yang, A. Rida, R. Vyas, M.M. Tentzeris, RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 55(12), 2894–2901 (2007)CrossRefGoogle Scholar
  88. 88.
    R. Vyas et al., Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11(12), 3139–3152 (2011)CrossRefGoogle Scholar
  89. 89.
    H.-Y. Tseng, V. Subramanian, All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org. Electron. 12(2), 249–256 (2011)CrossRefGoogle Scholar
  90. 90.
    S. Chung, J. Jang, J. Cho, C. Lee, S.-K. Kwon, Y. Hong, All-inkjet-printed organic thin-film transistors with silver gate, source/drain electrodes. Jpn. J. Appl. Phys. 50(3S), 03CB05 (2011)Google Scholar
  91. 91.
    T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Inkjet printing of polymer thin film transistors. Thin Solid Films 438–439, 279–287 (2003)CrossRefGoogle Scholar
  92. 92.
    H. Sirringhaus et al., High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499), 2123–2126 (2000)CrossRefGoogle Scholar
  93. 93.
    D.J. Lichtenwalner, A.E. Hydrick, A.I. Kingon, Flexible thin film temperature and strain sensor array utilizing a novel sensing concept. Sens. Actuators Phys. 135(2), 593–597 (2007)CrossRefGoogle Scholar
  94. 94.
    H. Al-Chami, E. Cretu, Inkjet printing of microsensors, in IEEE 15th International Mixed-Signals, Sensors, and Systems Test Workshop 2009 (IMS3TW ’09) (2009), pp. 1–6Google Scholar
  95. 95.
    P. Alpuim, V. Correia, E.S. Marins, J.G. Rocha, I.G. Trindade, S. Lanceros-Mendez, Piezoresistive silicon thin film sensor array for biomedical applications. Thin Solid Films 519(14), 4574–4577 (2011)CrossRefGoogle Scholar
  96. 96.
    F. Molina-Lopez, D. Briand, N.F. de Rooij, All additive inkjet printed humidity sensors on plastic substrate. Sens. Actuators B Chem. 166–167, 212–222 (2012)CrossRefGoogle Scholar
  97. 97.
    M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, B.B. Kale, Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B Chem. 178, 140–143 (2013)CrossRefGoogle Scholar
  98. 98.
    A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo, J.A. López-Villanueva, L.F. Capitan-Vallvey, A.J. Palma, Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing. Sens. Actuators B Chem. 195, 123–131 (2014)CrossRefGoogle Scholar
  99. 99.
    U. Altenberend et al., Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sens. Actuators B Chem. 187, 280–287 (2013)CrossRefGoogle Scholar
  100. 100.
    P. Sjöberg et al., Paper-based potentiometric ion sensors constructed on ink-jet printed gold electrodes. Sens. Actuators B Chem. 224, 325–332 (2016)CrossRefGoogle Scholar
  101. 101.
    N. Komuro, S. Takaki, K. Suzuki, D. Citterio, Inkjet printed (bio)chemical sensing devices. Anal. Bioanal. Chem. 405(17), 5785–5805 (2013)CrossRefGoogle Scholar
  102. 102.
    J. Wu et al., Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Lab Chip 15(3), 690–695 (2015)CrossRefGoogle Scholar
  103. 103.
    C.L. Kang, Y. Xu, K.L. Yung, W. Chen, Laser Induced Forward Transfer. Adv. Mater. Res. 591–593, 1135–1138 (2012)CrossRefGoogle Scholar
  104. 104.
    P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, J.L. Morenza, Laser-induced forward transfer: a direct-writing technique for biosensors preparation. J. Laser MicroNanoengineering 1(3), 236–242 (2006)CrossRefGoogle Scholar
  105. 105.
    C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, I. Zergioti, Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid. Nanofluidics 16(3), 493–500 (2013)CrossRefGoogle Scholar
  106. 106.
    R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy. J. Phys. Chem. C 114(12), 5617–5636 (2010)CrossRefGoogle Scholar
  107. 107.
    C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 96(4), 041104 (2010)CrossRefGoogle Scholar
  108. 108.
    A.P. Suryavanshi, M.-F. Yu, Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl. Phys. Lett. 88(8), 083103 (2006)CrossRefGoogle Scholar
  109. 109.
    J. Hu, M.-F. Yu, Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329(5989), 313–316 (2010)CrossRefGoogle Scholar
  110. 110.
    B.Y. Ahn et al., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921), 1590–1593 (2009)CrossRefGoogle Scholar
  111. 111.
    E. Macdonald et al., 3D printing for the rapid prototyping of structural electronics. IEEE Access 2, 234–242 (2014)CrossRefGoogle Scholar
  112. 112.
    P. Mostafalu, M. Akbari, K.A. Alberti, Q. Xu, A. Khademhosseini, S.R. Sonkusale, A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng. 2, 16039 (2016)CrossRefGoogle Scholar
  113. 113.
    T.F. O’Connor, K.M. Rajan, A.D. Printz, D.J. Lipomi, Toward organic electronics with properties inspired by biological tissue. J. Mater. Chem. B 3(25), 4947–4952 (2015)CrossRefGoogle Scholar
  114. 114.
    L. Cai, C. Wang, Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10(1), 1–21 (2015)CrossRefGoogle Scholar
  115. 115.
    J. Li et al., Graphene film-functionalized germanium as a chemically stable, electrically conductive, and biologically active substrate. J. Mater. Chem. B 3(8), 1544–1555 (2015)CrossRefGoogle Scholar
  116. 116.
    S. Wang, Y. Huang, J.A. Rogers, Mechanical designs for inorganic stretchable circuits in soft electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 5(9), 1201–1218 (2015)CrossRefGoogle Scholar
  117. 117.
    C. Wang, J.-.C. Chien, K. Takei, T. Takahashi, J. Nah, A.M. Niknejad, Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12(3), 1527–1533 (2012)Google Scholar
  118. 118.
    C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 12, 899–904 (2013)Google Scholar
  119. 119.
    N. Chou, S. Yoo, S. Kim, A largely deformable surface type neural electrode array based on PDMS. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 544–553 (2013)CrossRefGoogle Scholar
  120. 120.
    S.J. Kim et al., The potential role of polymethyl methacrylate as a new packaging material for the implantable medical device in the bladder. Biomed. Res. Int. 2015, 852456 (2015)Google Scholar
  121. 121.
    W. J. Bae et al., AB222. Comparison of biocompatibility between PDMS and PMMA as packaging materials for the intravesical implantable device: changes of macrophage and macrophage migratory inhibitory factor. Transl. Androl. Urol. 3(Suppl 1) (2014)Google Scholar
  122. 122.
    B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31(13), 3449–3458 (2010)CrossRefGoogle Scholar
  123. 123.
    Y. Qin, M.M.R. Howlader, M.J. Deen, Y.M. Haddara, P.R. Selvaganapathy, Polymer integration for packaging of implantable sensors. Sens. Actuators B Chem. 202, 758–778 (2014)CrossRefGoogle Scholar
  124. 124.
    M.M.R. Howlader, M. Iwashita, K. Nanbu, K. Saijo, T. Suga, Enhanced Cu/LCP adhesion by pre-sputter cleaning prior to Cu deposition. IEEE Trans. Adv. Packag. 28(3), 495–502 (2005)CrossRefGoogle Scholar
  125. 125.
    Y. Zhang, D. Li, Y. Li, S. Zhang, M. Wang, Y. Li, High electric conductivity of liquid crystals formed by ordered self-assembly of nonionic surfactant N,N-bis(2-hydroxyethyl)dodecanamide in water. Soft Matter 11(9), 1762–1766 (2015)CrossRefGoogle Scholar
  126. 126.
    C.J. Bettinger, J.P. Bruggeman, A. Misra, J.T. Borenstein, R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30(17), 3050–3057 (2009)CrossRefGoogle Scholar
  127. 127.
    C.L.E. Nijst et al., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromol 8(10), 3067–3073 (2007)CrossRefGoogle Scholar
  128. 128.
    M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Biodegradable polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 805–813 (2008)CrossRefGoogle Scholar
  129. 129.
    A. Campana, T. Cramer, D.T. Simon, M. Berggren, F. Biscarini, Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26(23), 3874–3878 (2014)CrossRefGoogle Scholar
  130. 130.
    G. Mattana, D. Briand, A. Marette, A. Vásquez Quintero, N.F. de Rooij, Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Org. Electron. 17, 77–86 (2015)Google Scholar
  131. 131.
    D.-H. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)CrossRefGoogle Scholar
  132. 132.
    Y. Liu et al., Highly flexible and lightweight organic solar cells on biocompatible silk fibroin. ACS Appl. Mater. Interfaces. 6(23), 20670–20675 (2014)CrossRefGoogle Scholar
  133. 133.
    C.J. Bettinger, Z. Bao, Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22(5), 651–655 (2010)CrossRefGoogle Scholar
  134. 134.
    M. Irimia-Vladu et al., Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24(3), 375–380 (2012)CrossRefGoogle Scholar
  135. 135.
    M. Irimia-Vladu, N.S. Sariciftci, S. Bauer, Exotic materials for bio-organic electronics. J. Mater. Chem. 21(5), 1350–1361 (2011)CrossRefGoogle Scholar
  136. 136.
    M. Irimia-Vladu et al., Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)CrossRefGoogle Scholar
  137. 137.
    T.K. Das, S. Prusty, Review on conducting polymers and their applications. Polym.-Plast. Technol. Eng. 51(14), 1487–1500 (2012)CrossRefGoogle Scholar
  138. 138.
    N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32(8–9), 876–921 (2007)CrossRefGoogle Scholar
  139. 139.
    S. Kim, J.-H. Kim, O. Jeon, I.C. Kwon, K. Park, Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 71(3), 420–430 (2009)CrossRefGoogle Scholar
  140. 140.
    J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33(4), 448–477 (2008)CrossRefGoogle Scholar
  141. 141.
    S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26(5), 1825–1832 (2011)CrossRefGoogle Scholar
  142. 142.
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)CrossRefGoogle Scholar
  143. 143.
    C.K. Chiang et al., Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)CrossRefGoogle Scholar
  144. 144.
    C.K. Chiang, S.C. Gau, C.R.F. Jr, Y.W. Park, A.G. MacDiarmid, A.J. Heeger, Polyacetylene, (CH)x: n-type and p-type doping and compensation. Appl. Phys. Lett. 33(1), 18–20 (1978)CrossRefGoogle Scholar
  145. 145.
    S. Stassi, V. Cauda, G. Canavese, C.F. Pirri, Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14(3), 5296–5332 (2014)CrossRefGoogle Scholar
  146. 146.
    C. Li, P.M. Wu, S. Lee, A. Gorton, M.J. Schulz, C.H. Ahn, Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromechanical Syst. 17(2), 334–341 (2008)CrossRefGoogle Scholar
  147. 147.
    V. Maheshwari, R.F. Saraf, High-resolution thin-film device to sense texture by touch. Science 312(5779), 1501–1504 (2006)CrossRefGoogle Scholar
  148. 148.
    T. Nelson, R. vanDover, S. Jin, S. Hackwood, G. Beni, Shear-sensitive magnetoresistive robotic tactile sensor. IEEE Trans. Magn. 22(5), 394–396 (1986)Google Scholar
  149. 149.
    G.M. Krishna, K. Rajanna, Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 4(5), 691–697 (2004)CrossRefGoogle Scholar
  150. 150.
    S.C.B. Mannsfeld et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010)CrossRefGoogle Scholar
  151. 151.
    J.A. Dobrzynska, M.A.M. Gijs, Flexible polyimide-based force sensor. Sens. Actuators Phys. 173(1), 127–135 (2012)CrossRefGoogle Scholar
  152. 152.
    Y. Zhou, C.-W. Chiu, H. Liang, Interfacial structures and properties of organic materials for biosensors: an overview. Sensors 12(11), 15036–15062 (2012)CrossRefGoogle Scholar
  153. 153.
    J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2(1), 19–24 (2003)CrossRefGoogle Scholar
  154. 154.
    M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)CrossRefGoogle Scholar
  155. 155.
    D.D. Borole, U.R. Kapadi, P.P. Mahulikar, D.G. Hundiwale, Conducting polymers: an emerging field of biosensors. Des. Monomers Polym. 9(1), 1–11 (2006)CrossRefGoogle Scholar
  156. 156.
    C.-C. Wen, W. Fang, Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane. Sens. Actuators Phys. 145–146, 14–22 (2008)CrossRefGoogle Scholar
  157. 157.
    B.J. Kane, M.R. Cutkosky, G.T.A. Kovacs, A traction stress sensor array for use in high-resolution robotic tactile imaging. J. Microelectromechanical Syst. 9(4), 425–434 (2000)CrossRefGoogle Scholar
  158. 158.
    H. Hu, K. Shaikh, C. Liu, Super flexible sensor skin using liquid metal as interconnect, 2007 in IEEE Sensors (2007), pp. 815–817Google Scholar
  159. 159.
    M.-Y. Cheng, C.-M. Tsao, Y.-Z. Lai, Y.-J. Yang, The development of a highly twistable tactile sensing array with stretchable helical electrodes. Sens. Actuators Phys. 166(2), 226–233 (2011)CrossRefGoogle Scholar
  160. 160.
    Y.-J. Yang et al., An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators Phys. 143(1), 143–153 (2008)CrossRefGoogle Scholar
  161. 161.
    B. Dong, M. Krutschke, X. Zhang, L. Chi, H. Fuchs, Fabrication of polypyrrole wires between microelectrodes. Small 1(5), 520–524 (2005)CrossRefGoogle Scholar
  162. 162.
    B. Dong, D.Y. Zhong, L.F. Chi, H. Fuchs, Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 17(22), 2736–2741 (2005)CrossRefGoogle Scholar
  163. 163.
    A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)CrossRefGoogle Scholar
  164. 164.
    A. Nathan et al., Flexible electronics: the next ubiquitous platform. Proc. IEEE. 100(Special Centennial Issue), May 2012, pp. 1486–1517Google Scholar
  165. 165.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  166. 166.
    K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  167. 167.
    F. Withers et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)CrossRefGoogle Scholar
  168. 168.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRefGoogle Scholar
  169. 169.
    F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRefGoogle Scholar
  170. 170.
    S.-K. Lee et al., All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12(7), 3472–3476 (2012)CrossRefGoogle Scholar
  171. 171.
    S.-K. Lee et al., Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11(11), 4642–4646 (2011)CrossRefGoogle Scholar
  172. 172.
    S. Riazimehr et al., Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid-State Electron. 115(Part B), 207–212 (2016)Google Scholar
  173. 173.
    M.C. Lemme et al., Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)CrossRefGoogle Scholar
  174. 174.
    T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)CrossRefGoogle Scholar
  175. 175.
    X. Gan et al., Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)CrossRefGoogle Scholar
  176. 176.
    A. Pospischil et al., CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)CrossRefGoogle Scholar
  177. 177.
    F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014)CrossRefGoogle Scholar
  178. 178.
    D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9(8), 1188–1205 (2013)CrossRefGoogle Scholar
  179. 179.
    L. Buglione, E.L.K. Chng, A. Ambrosi, Z. Sofer, M. Pumera, Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochem. Commun. 14(1), 5–8 (2012)CrossRefGoogle Scholar
  180. 180.
    A. Bonanni, M. Pumera, High-resolution impedance spectroscopy for graphene characterization. Electrochem. Commun. 26, 52–54 (2013)CrossRefGoogle Scholar
  181. 181.
    G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRefGoogle Scholar
  182. 182.
    S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRefGoogle Scholar
  183. 183.
    T. Kobayashi et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)CrossRefGoogle Scholar
  184. 184.
    L. Gao, G.-X. Ni, Y. Liu, B. Liu, A.H. Castro Neto, K.P. Loh, Face-to-face transfer of wafer-scale graphene films. Nature 505(7482), 190–194 (2014)Google Scholar
  185. 185.
    C. Yan, J.H. Cho, J.-H. Ahn, Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16), 4870–4882 (2012)CrossRefGoogle Scholar
  186. 186.
    K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRefGoogle Scholar
  187. 187.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser Scribing of High-Performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRefGoogle Scholar
  188. 188.
    V.L. Solozhenko, A.G. Lazarenko, J.-P. Petitet, A.V. Kanaev, Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62(7), 1331–1334 (2001)CrossRefGoogle Scholar
  189. 189.
    H. Amano, T. Asahi, I. Akasaki, Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 29(Part 2, No. 2), L205–L206 (1990)Google Scholar
  190. 190.
    K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)CrossRefGoogle Scholar
  191. 191.
    M. Wang et al., A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)CrossRefGoogle Scholar
  192. 192.
    C.R. Dean et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)CrossRefGoogle Scholar
  193. 193.
    K.K. Kim et al., Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)CrossRefGoogle Scholar
  194. 194.
    Z. Liu et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8(2), 119–124 (2013)CrossRefGoogle Scholar
  195. 195.
    E. Kim, T. Yu, E.S. Song, B. Yu, Chemical vapor deposition-assembled graphene field-effect transistor on hexagonal boron nitride. Appl. Phys. Lett. 98(26), 262103 (2011)CrossRefGoogle Scholar
  196. 196.
    J. Lee et al., High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron Device Lett. 34(2), 172–174 (2013)CrossRefGoogle Scholar
  197. 197.
    R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35(12), 6195–6202 (1987)CrossRefGoogle Scholar
  198. 198.
    C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, H. Liu, Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)CrossRefGoogle Scholar
  199. 199.
    C. Lee et al., Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)CrossRefGoogle Scholar
  200. 200.
    J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969)CrossRefGoogle Scholar
  201. 201.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRefGoogle Scholar
  202. 202.
    N.R. Pradhan et al., Field-effect transistors based on few-layered α-MoTe2. ACS Nano. 8(6), 5911–5920 (2014)CrossRefGoogle Scholar
  203. 203.
    G.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano. 7(9), 7931–7936 (2013)CrossRefGoogle Scholar
  204. 204.
    G. Fiori et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)CrossRefGoogle Scholar
  205. 205.
    D. B. Velusamy et al., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 6, 8063 (2015)Google Scholar
  206. 206.
    C. Kim, T.P. Nguyen, Q.V. Le, J.-M. Jeon, H.W. Jang, S.Y. Kim, Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 25(28), 4512–4519 (2015)CrossRefGoogle Scholar
  207. 207.
    A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and applications for large area electronics: solution-based approaches, Chem. Rev. 110(1), 3–24 (2010)Google Scholar
  208. 208.
    S.H. Chang, C.H. Chiang, F.S. Kao, C.L. Tien, C.G. Wu, Unraveling the enhanced electrical conductivity of PEDOT:PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 6(4), 1–7 (2014)CrossRefGoogle Scholar
  209. 209.
    H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39, 2643–2666 (2010)Google Scholar
  210. 210.
    T.W. Kelley et al., Recent progress in organic electronics: materials, devices, and processes. Chem. Mater. 16(23), 4413–4422 (2004)CrossRefGoogle Scholar
  211. 211.
    F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Organic electronics on paper. Appl. Phys. Lett. 84(14), 2673–2675 (2004)CrossRefGoogle Scholar
  212. 212.
    V. Benfenati et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)MathSciNetCrossRefGoogle Scholar
  213. 213.
    M. Katsuhara et al., 44.2: Distinguished Paper: a reliable flexible OLED display with an OTFT backplane manufactured using a scalable process. SID Symp. Dig. Tech. Pap. 40(1), 656–659 (2009)CrossRefGoogle Scholar
  214. 214.
    T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22 (2010)Google Scholar
  215. 215.
    A.S. Azam, M. Boukadoum, R. Izquierdo, A. Acharya, M. Packirisamy, Integrated multifunctional fluorescence biosensor based on OLED technology, in 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference (NEWCAS-TAISA 2008) (2008), pp. 173–176Google Scholar
  216. 216.
    K.L. Lin, K. Jain, Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation. IEEE Electron Device Lett. 30(1), 14–17 (2009)CrossRefGoogle Scholar
  217. 217.
    K.-S. Kim, K.-H. Jung, S.-B. Jung, Design and fabrication of screen-printed silver circuits for stretchable electronics. Microelectron. Eng. 120, 216–220 (2014)CrossRefGoogle Scholar
  218. 218.
    H.J. Kim, T. Maleki, P. Wei, B. Ziaie, A Biaxial Stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromechanical Syst. 18(1), 138–146 (2009)CrossRefGoogle Scholar
  219. 219.
    H. Hocheng, C.-M. Chen, Design, fabrication and failure analysis of stretchable electrical routings. Sensors 14(7), 11855–11877 (2014)CrossRefGoogle Scholar
  220. 220.
    T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27(22), 3349–3376 (2015)CrossRefGoogle Scholar
  221. 221.
    Y. Zhang et al., Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24(14), 2028–2037 (2014)CrossRefGoogle Scholar
  222. 222.
    J. Lee et al., Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23(8), 986–991 (2011)CrossRefGoogle Scholar
  223. 223.
    C. Yu, H. Jiang, Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films 519(2), 818–822 (2010)CrossRefGoogle Scholar
  224. 224.
    S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25(4), 179–181 (2004)CrossRefGoogle Scholar
  225. 225.
    Y.Y. Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, I.D. Wolf, Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans. Electron Devices 58(8), 2680–2688 (2011)CrossRefGoogle Scholar
  226. 226.
    Y. Zhang et al., Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9(33), 8062–8070 (2013)CrossRefGoogle Scholar
  227. 227.
    Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I. De Wolf, The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnects. Thin Solid Films 519(7), 2225–2234 (2011)CrossRefGoogle Scholar
  228. 228.
    Mario Gonzalez, Fabrice Axisa, Frederick Bossuyt, Yung-Yu. Hsu, Bart Vandevelde, Jan Vanfleteren, Design and performance of metal conductors for stretchable electronic circuits. Circuit World 35(1), 22–29 (2009)CrossRefGoogle Scholar
  229. 229.
    M. Gonzalez, F. Axisa, M.V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48(6), 825–832 (2008)CrossRefGoogle Scholar
  230. 230.
    O. van der Sluis, Y.Y. Hsu, P.H.M. Timmermans, M. Gonzalez, J.P.M. Hoefnagels, Stretching-induced interconnect delamination in stretchable electronic circuits. J. Phys. Appl. Phys. 44(3), 034008 (2011)CrossRefGoogle Scholar
  231. 231.
    S. Xu et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)CrossRefGoogle Scholar
  232. 232.
    Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I.D. Wolf, The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromechanics Microengineering 20(7), 075036 (2010)CrossRefGoogle Scholar
  233. 233.
    D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)CrossRefGoogle Scholar
  234. 234.
    A.M. Hussain, E.B. Lizardo, G.A. Torres Sevilla, J.M. Nassar, M.M. Hussain, Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy. Adv. Healthcare Mater. 4(5), 665–673 (2015)CrossRefGoogle Scholar
  235. 235.
    J.A. Fan et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)Google Scholar
  236. 236.
    L. Bowman, J.D. Meindl, The packaging of implantable integrated sensors. IEEE Trans. Biomed. Eng. BME-33(2), 248–255 (1986)Google Scholar
  237. 237.
    D.F. Williams, Biocompatibility of Clinical Implant Materials (CRC Press, Boca Raton, 1981)Google Scholar
  238. 238.
    G. Jiang, D.D. Zhou, Technology advances and challenges in hermetic packaging for implantable medical devices, in Implantable Neural Prostheses 2, ed. by D. Zhou, E. Greenbaum (Springer, New York, 2009), pp. 27–61CrossRefGoogle Scholar
  239. 239.
    A. Cavallini et al., A subcutaneous biochip for remote monitoring of human metabolism: packaging and biocompatibility assessment. IEEE Sens. J. 15(1), 417–424 (2015)CrossRefGoogle Scholar
  240. 240.
    T.J. Harpster, S.A. Nikles, M.R. Dokmeci, K. Najafi, Long-term hermeticity and biological performance of anodically bonded glass-silicon implantable packages. IEEE Trans. Device Mater. Reliab. 5(3), 458–466 (2005)CrossRefGoogle Scholar
  241. 241.
    K. Najafi, Packaging of implantable microsystems, in 2007 IEEE Sensors (2007), pp. 58–63Google Scholar
  242. 242.
    K. Najafi, in Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS (2003), pp. 1–19Google Scholar
  243. 243.
    T.J. Harpster, S. Hauvespre, M.R. Dokmeci, K. Najafi, A passive humidity monitoring system for in situ remote wireless testing of micropackages. J. Microelectromechanical Syst. 11(1), 61–67 (2002)CrossRefGoogle Scholar
  244. 244.
    T. Stieglitz, Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst. Technol. 16(5), 723–734 (2010)CrossRefGoogle Scholar
  245. 245.
    M. Schuettler, J.S. Ordonez, T.S. Santisteban, A. Schatz, J. Wilde, T. Stieglitz, Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010), pp. 1585–1588Google Scholar
  246. 246.
    M. Schuettler, A. Schatz, J.S. Ordonez, T. Stieglitz, Ensuring minimal humidity levels in hermetic implant housings, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2011), pp. 2296–2299Google Scholar
  247. 247.
    J.S. Ordonez, M. Schuettler, M. Ortmanns, T. Stieglitz, A 232-channel retinal vision prosthesis with a miniaturized hermetic package, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012), pp. 2796–2799Google Scholar
  248. 248.
    N. Saeidi, M. Schuettler, A. Demosthenous, N. Donaldson, Technology for integrated circuit micropackages for neural interfaces, based on gold–silicon wafer bonding. J. Micromechanics Microengineering 23(7), 075021 (2013)CrossRefGoogle Scholar
  249. 249.
    N. Saeidi, J. Strutwolf, A. Marechal, A. Demosthenous, N. Donaldson, A capacitive humidity sensor suitable for CMOS integration. IEEE Sens. J. 13(11), 4487–4495 (2013)CrossRefGoogle Scholar
  250. 250.
    N. Saeidi, A. Demosthenous, N. Donaldson, J. Alderman, Design and fabrication of corrosion and humidity sensors for performance evaluation of chip scale hermetic packages for biomedical implantable devices, in European Microelectronics and Packaging Conference 2009 (EMPC 2009) (2009), pp. 1–4Google Scholar
  251. 251.
    A. Ivorra et al., Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 19(4), 391–399 (2003)MathSciNetCrossRefGoogle Scholar
  252. 252.
    R. Gómez et al., A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices 8(1), 43–49 (2006)CrossRefGoogle Scholar
  253. 253.
    M. Tijero et al., SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009)CrossRefGoogle Scholar
  254. 254.
    A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J. Biomed. Mater. Res. 37(3), 401–412 (1997)CrossRefGoogle Scholar
  255. 255.
    A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J. Biomed. Mater. Res. 40(4), 598–605 (1998)CrossRefGoogle Scholar
  256. 256.
    T. Trantidou, D.J. Payne, V. Tsiligkiridis, Y.-C. Chang, C. Toumazou, T. Prodromakis, The dual role of Parylene C in chemical sensing: acting as an encapsulant and as a sensing membrane for pH monitoring applications. Sens. Actuators B Chem. 186, 1–8 (2013)CrossRefGoogle Scholar
  257. 257.
    G.S. Prihandana et al., Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices. J. Biomed. Mater. Res. B Appl. Biomater. 103(6), 1180–1187 (2015)CrossRefGoogle Scholar
  258. 258.
    M.M.R. Howlader, A.U. Alam, R.P. Sharma, M.J. Deen, Materials analyses and electrochemical impedance of implantable metal electrodes. Phys. Chem. Chem. Phys. 17(15), 10135–10145 (2015)CrossRefGoogle Scholar
  259. 259.
    M. Schuettler, T. Stieglitz, Microassembly and micropackaging of implantable systems, in Implantable Sensor Systems for Medical Applications (Woodhead Publishing, Oxford, 2013), pp. 108–149Google Scholar
  260. 260.
    M. Dokmeci, K. Najafi, A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages. J. Microelectromechanical Syst. 10(2), 197–204 (2001)CrossRefGoogle Scholar
  261. 261.
    D. Cirmirakis, A. Demosthenous, N. Saeidi, N. Donaldson, Humidity-to-Frequency sensor in cmos technology with wireless readout. IEEE Sens. J. 13(3), 900–908 (2013)CrossRefGoogle Scholar
  262. 262.
    G.S. Wilson, M. Ammam, In vivo biosensors. FEBS J. 274(21), 5452–5461 (2007)CrossRefGoogle Scholar
  263. 263.
    G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)CrossRefGoogle Scholar
  264. 264.
    S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)CrossRefGoogle Scholar
  265. 265.
    C.N. Kotanen, A. Guiseppi-Elie, Monitoring systems and quantitative measurement of biomolecules for the management of Trauma. Biomed. Microdevices 15(3), 561–577 (2013)CrossRefGoogle Scholar
  266. 266.
    J.H. Shin, M.H. Schoenfisch, Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst 131(5), 609–615 (2006)CrossRefGoogle Scholar
  267. 267.
    M. Frost, M.E. Meyerhoff, In vivo chemical sensors: tackling biocompatibility. Anal. Chem. 78(21), 7370–7377 (2006)CrossRefGoogle Scholar
  268. 268.
    Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D.J. Burgess, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2(6), 1003–1015 (2008)CrossRefGoogle Scholar
  269. 269.
    L.A. Geddes, R. Roeder, Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng. 31(7), 879–890 (2003)Google Scholar
  270. 270.
    A. Radu et al., Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Anal. Methods 2(10), 1490–1498 (2010)CrossRefGoogle Scholar
  271. 271.
    R.C. Mercado, F. Moussy, In vitro and in vivo mineralization of Nafion membrane used for implantable glucose sensors. Biosens. Bioelectron. 13(2), 133–145 (1998)CrossRefGoogle Scholar
  272. 272.
    S.R. Shah, A.M. Tatara, R.N. D’Souza, A.G. Mikos, F.K. Kasper, Evolving strategies for preventing biofilm on implantable materials. Mater. Today 16(5), 177–182 (2013)CrossRefGoogle Scholar
  273. 273.
    J.D. Patel, M. Ebert, R. Ward, J.M. Anderson, S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J. Biomed. Mater. Res. A 80A(3), 742–751 (2007)CrossRefGoogle Scholar
  274. 274.
    E.M. Hetrick, M.H. Schoenfisch, Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35(9), 780–789 (2006)CrossRefGoogle Scholar
  275. 275.
    J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res. 31(1), 81–110 (2001)CrossRefGoogle Scholar
  276. 276.
    J.A. Jones et al., Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A 83A(3), 585–596 (2007)CrossRefGoogle Scholar
  277. 277.
    E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure—property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18), 5605–5620 (2001)CrossRefGoogle Scholar
  278. 278.
    N. Tirelli, M.P. Lutolf, A. Napoli, J.A. Hubbell, Poly(ethylene glycol) block copolymers. Rev. Mol. Biotechnol. 90(1), 3–15 (2002)CrossRefGoogle Scholar
  279. 279.
    I.A. Silver, R.J. Murrills, D.J. Etherington, Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175(2), 266–276 (1988)CrossRefGoogle Scholar
  280. 280.
    A. Koh, S.P. Nichols, M.H. Schoenfisch, Glucose sensor membranes for mitigating the foreign body response. J. Diabetes Sci. Technol. 5(5), 1052–1059 (2011)CrossRefGoogle Scholar
  281. 281.
    R.D. Jayant, M.J. McShane, R. Srivastava, In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int. J. Pharm. 403(1–2), 268–275 (2011)CrossRefGoogle Scholar
  282. 282.
    Y. Wang, F. Papadimitrakopoulos, D.J. Burgess, Polymeric ‘smart’ coatings to prevent foreign body response to implantable biosensors. J. Controlled Release 169(3), 341–347 (2013)CrossRefGoogle Scholar
  283. 283.
    J.H. Shin, S.M. Marxer, M.H. Schoenfisch, Nitric oxide-releasing sol–gel particle/polyurethane glucose biosensors. Anal. Chem. 76(15), 4543–4549 (2004)CrossRefGoogle Scholar
  284. 284.
    G.S. Wilson, M.A. Johnson, In-vivo electrochemistry: what can we learn about living systems?. Chem. Rev. 108(7), 2462–2481 (2008)Google Scholar
  285. 285.
    D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39(2), 266–276 (1998)CrossRefGoogle Scholar
  286. 286.
    B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6(1), 41–75 (2004)CrossRefGoogle Scholar
  287. 287.
    Use of International Standard ISO 10993-1, ‘Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process’: Guidance for Industry and Food and Drug Administration Staff. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, 16 June 2016Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • P. Kassanos
    • 1
  • S. Anastasova
    • 1
  • C. M. Chen
    • 1
  • Guang-Zhong Yang
    • 1
  1. 1.The Hamlyn CentreImperial College LondonLondonUK

Personalised recommendations