Skip to main content

Electrical and Physical Sensors for Biomedical Implants

  • Chapter
  • First Online:
Implantable Sensors and Systems

Abstract

In addition to the electrochemical sensors discussed in Chap. 2, a range of other sensing modalities are also important for biomedical and implantable applications. The frequency-dependent electrical properties of tissues are essential for assessing various physiological parameters. This, for example, can be quantified via electrical bioimpedance measurements, which can be combined and corroborated with electrochemical sensors. The human body is a dynamic system in constant motion; therefore, sensors for the measurement of physical properties such as strain and pressure are also important. Sensors for these applications rely on the measurement of resistance, capacitance, and sometimes inductance, and these will also be discussed in this chapter for completeness. Temperature is an important health marker for various applications, and consequently the current state of the art in temperature sensors is also discussed, in terms of both monolithic integration and discrete sensor solutions. Monitoring of the electrical response of the nervous system and the delivery of stimuli represent an important family of applications for neuroscience research and neuroprosthetic devices. These will be addressed in this chapter, along with various application scenarios. Other aspects to be discussed include sensor metrics, such as sensitivity, limit of detection, stability, linear range, selectivity, and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Ascorbic acid

AC:

Alternating current

AM:

Amplitude modulation

AMR:

Anisotropic magnetoresistance

ASIC:

Application specific integrated circuit

ATP:

Adenosine triphosphate

BGA:

Ball grid array

BJT:

Bipolar junction transistor

BPF:

Bandpass filter

CF:

Crest factor

CIN:

Cervical intraepithelial neoplasia

CM:

Conformal mapping

CNT:

Carbon nanotube

CMOS:

Complementary metal-oxide semiconductor

CMRR:

Common-mode rejection ratio

CTAT:

Complementary to absolute temperature

CVD:

Cardiovascular disease

DAC:

Digital-to-analog converter

DBS:

Deep brain stimulation

DC:

Direct current

DDS:

Direct digital synthesis

DIBS:

Discrete interval binary sequence

EIS:

Electrical impedance spectroscopy

EIT:

Electrical impedance tomography

EVD:

External ventricular drain

FEM:

Finite element method

FET:

Field-effect transistor

FFT:

Fast Fourier transform

FOG:

Freezing of gait

FPGA:

Field programmable gate arrays

GF:

Gauge factor

GI:

Gastro-intestinal

GMR:

Giant magnetoresistance

GOD:

Glucose oxidase

HEX:

Hexokinase

HPF:

High-pass filter

I:

In-phase

ICP:

Intracranial pressure

IOP:

Intraocular pressure

ISE:

Ion selective electrode

ISFET:

Ion-sensitive field-effect transistor

LOD:

Limit of detection

LPF:

Low-pass filter

MEG:

Magneto-encephalography

MEMS:

Micro-electro-mechanical systems

MLBS:

Maximum length binary sequence

MOSFET:

Metal-oxide-semiconductor field-effect transistor

MWCNT:

Multi-walled carbon nanotube

MP:

Magnitude/phase

NMRR:

Normal mode rejection ratio

NTC:

Negative temperature coefficient

OTA:

Operational transconductance amplifier

PAC:

Patient auxiliary currents

PCB:

Printed circuit board

PDMS:

Polydimethylsiloxane

PEN:

Poly (ethylene naphthalate)

PET:

Polyethylene terephthalate

PI:

Polyimide

PSA:

Prostate specific antigen

PTAT:

Proportional to absolute temperature

Q:

Quadrature

RE:

Reference electrode

RF:

Radio frequency

RMS:

Root mean square

RRF:

Resonance response frequency

RTD:

Resistance temperature detector

SAW:

Surface acoustic wave

SD:

Synchronous demodulation

SEM:

Scanning electron microscope

SMRR:

Series mode rejection ratio

SNR:

Signal to noise ratio

SOI:

Silicon-on-insulator

SQUID:

Superconducting quantum interference devices

SO:

Sphincter of Oddi

SOM:

Sphincter of Oddi manometry

SRR:

Split ring resonator

SS:

Synchronous sampling

ssDNA:

Single stranded deoxyribonucleic acid

SSI:

Surgical site infection

SWCNT:

Single-walled carbon nanotube

TCR:

Temperature coefficient of resistance

TRUS:

Transrectal ultrasound

UA:

Uric acid

VCCS:

Voltage controlled current source

VOR:

Vestibulo-ocular reflex

ZOH:

Zero-order hold

References

  1. F. Lisdat, D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391(5), 1555–1567 (2008)

    Article  Google Scholar 

  2. P. Kassanos, I.F. Triantis, A CMOS multi-sine signal generator for multi-frequency bioimpedance measurements, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), (2014), pp. 249–252

    Google Scholar 

  3. W.R.B. Lionheart, J. Kaipio, C.N. McLeod, Generalized optimal current patterns and electrical safety in EIT. Physiol. Meas. 22(1), 85–90 (2001)

    Article  Google Scholar 

  4. S. Grimnes, O.G. Martinsen, Bioimpedance and Bioelectricity Basics, 1st edn. (Academic Press, Suffolk, UK, 2000)

    Google Scholar 

  5. C. Gabriel, S. Gabriel, E. Corthout, The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231–2249 (1996)

    Article  Google Scholar 

  6. O.G. Martinsen, S. Grimnes, H.P. Schwan, “Interface phenomena and dielectric properties of biological tissue”, in Encyclopedia of Surface and Colloid Science (Marcel Dekker, New York, 2002), pp. 2643–2652

    Google Scholar 

  7. H.P. Schwan, Electrical properties of body tissues and impedance plethysmography. IRE Trans. Med. Electron. PGME 3, 32–46 (1955)

    Article  Google Scholar 

  8. M. Min, T. Parve, A. Ronk, P. Annus, T. Paavle, Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement. IEEE Trans. Instrum. Meas. 56(4), 1365–1372 (2007)

    Article  Google Scholar 

  9. C.L. del Rio et al., Early time course of myocardial electrical impedance during acute coronary artery occlusion in pigs, dogs, and humans. J. Appl. Physiol. 99(4), 1576–1581 (2005)

    Article  Google Scholar 

  10. A. McEwan, J. Tapson, A. van Schaik, D.S. Holder, Code-division-multiplexed electrical impedance tomography spectroscopy. IEEE Trans. Biomed. Circuits Syst. 3(5), 332–338 (2009)

    Article  Google Scholar 

  11. S. Abdul, B.H. Brown, P. Milnes, J.A. Tidy, The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. Int. J. Gynecol. Cancer 16(5), 1823–1832 (2006)

    Article  Google Scholar 

  12. H.-G. Jahnke et al., Impedance spectroscopy—an outstanding method for label-free and real-time discrimination between brain and tumor tissue in vivo. Biosens. Bioelectron. 46, 8–14 (2013)

    Article  Google Scholar 

  13. Y. Wan, R. Halter, A. Borsic, P. Manwaring, A. Hartov, K. Paulsen, Sensitivity study of an ultrasound coupled transrectal electrical impedance tomography system for prostate imaging. Physiol. Meas. 31(8), S17–S29 (2010)

    Article  Google Scholar 

  14. J. Harms, A. Schneider, M. Baumgartner, J. Henke, R. Busch, Diagnosing acute liver graft rejection: experimental application of an implantable telemetric impedance device in native and transplanted porcine livers. Biosens. Bioelectron. 16(3), 169–177 (2001)

    Article  Google Scholar 

  15. C.A. González-Correa et al., Virtual biopsies in Barrett’s esophagus using an impedance probe. Ann. N. Y. Acad. Sci. 873(1), 313–321 (1999)

    Article  Google Scholar 

  16. H.N. Nguyen, J. Silny, S. Matern, Multiple intraluminal electrical impedancometry for recording of upper gastrointestinal motility: current results and further implications. Am. J. Gastroenterol. 94(2), 306–317 (1999)

    Article  Google Scholar 

  17. A.J. Bredenoord, B.L.A.M. Weusten, D. Sifrim, R. Timmer, A.J.P.M. Smout, Aerophagia, gastric, and supragastric belching: a study using intraluminal electrical impedance monitoring. Gut 53(11), 1561–1565 (2004)

    Article  Google Scholar 

  18. C.A. González, C. Villanueva, S. Othman, R. Narváez, E. Sacristán, Impedance spectroscopy for monitoring ischemic injury in the intestinal mucosa. Physiol. Meas. 24(2), 277–289 (2003)

    Article  Google Scholar 

  19. H. Imam, C. Sanmiguel, B. Larive, Y. Bhat, E. Soffer, Study of intestinal flow by combined videofluoroscopy, manometry, and multiple intraluminal impedance. Am. J. Physiol. Gastrointest. Liver Physiol. 286(2), G263–G270 (2004)

    Article  Google Scholar 

  20. J.L. Gonzalez-Guillaumin, D.C. Sadowski, O. Yadid-Pecht, K.V.I.S. Kaler, M.P. Mintchev, Multichannel pressure, bolus transit, and pH esophageal catheter. IEEE Sens. J. 6(3), 796–803 (2006)

    Article  Google Scholar 

  21. A.J. Bredenoord, B.L.A.M. Weusten, R. Timmer, A.J.P.M. Smout, Minimum sample frequency for multichannel intraluminal impedance measurement of the oesophagus. Neurogastroenterol. Motil. 16(6), 713–719 (2004)

    Article  Google Scholar 

  22. A. Al-Zaben, V. Chandrasekar, Computation of intraluminal impedance. Physiol. Meas. 25(1), 61 (2004)

    Article  Google Scholar 

  23. J. Fass et al., Measuring esophageal motility with a new intraluminal impedance device: first clinical results in reflux patients. Scand. J. Gastroenterol. 29(8), 693–702 (1994)

    Article  Google Scholar 

  24. R. Tutuian, M.F. Vela, S.S. Shay, D.O. Castell, Multichannel intraluminal impedance in esophageal function testing and gastroesophageal reflux monitoring. J. Clin. Gastroenterol. 37(3), 206–215 (2003)

    Article  Google Scholar 

  25. F. Mellert et al., Detection of (reversible) myocardial ischemic injury by means of electrical bioimpedance. IEEE Trans. Biomed. Eng. 58(6), 1511–1518 (2011)

    Article  Google Scholar 

  26. J. Wtorek et al., Monitoring of myocardium state during off-pump coronary artery by-pass grafting. Physiol. Meas. 29(6), S393–S405 (2008)

    Article  Google Scholar 

  27. Y. Salazar, R. Bragos, O. Casas, J. Cinca, J. Rosell, Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium. IEEE Trans. Biomed. Eng. 51(8), 1421–1427 (2004)

    Article  Google Scholar 

  28. R. Dzwonczyk, C. del Rio, D.A. Brown, R.E. Michler, R.K. Wolf, M.B. Howie, Myocardial electrical impedance responds to ischemia and reperfusion in humans. IEEE Trans. Biomed. Eng. 51(12), 2206–2209 (2004)

    Article  Google Scholar 

  29. S. Kun, B. Ristic, R.A. Peura, R.M. Dunn, Algorithm for tissue ischemia estimation based on electrical impedance spectroscopy. IEEE Trans. Biomed. Eng. 50(12), 1352–1359 (2003)

    Article  Google Scholar 

  30. B. Ristic, S. Kun, R.A. Peura, Muscle tissue ischemia monitoring using impedance spectroscopy: quantitative results of animal studies, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (1997), pp. 2108–2111

    Google Scholar 

  31. O. Casas et al., In vivo and in situ ischemic tissue characterization using electrical impedance spectroscopya. Ann. N. Y. Acad. Sci. 873(1), 51–58 (1999)

    Article  Google Scholar 

  32. M.A. Fallert et al., Myocardial electrical impedance mapping of ischemic sheep hearts and healing aneurysms. Circulation 87(1), 199–207 (1993)

    Article  Google Scholar 

  33. A. Ivorra et al., Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 19(4), 391–399 (2003)

    Article  MathSciNet  Google Scholar 

  34. R. Gómez et al., A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices 8(1), 43–49 (2006)

    Article  Google Scholar 

  35. A. Sola et al., Multiparametric monitoring of ischemia-reperfusion in rat kidney: effect of ischemic preconditioning. Transplantation 75(6), 744–749 (2003)

    Article  Google Scholar 

  36. M. Tijero et al., SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009)

    Article  Google Scholar 

  37. J. Cinca et al., Changes in myocardial electrical impedance in human heart graft rejection. Eur. J. Heart Fail. 10(6), 594–600 (2008)

    Article  Google Scholar 

  38. M. Schäfer, C. Schlegel, H.-J. Kirlum, E. Gersing, M.M. Gebhard, Monitoring of damage to skeletal muscle tissues caused by ischemia. Bioelectrochem. Bioenerg. 45(2), 151–155 (1998)

    Article  Google Scholar 

  39. A. Yufera, A. Rueda, J.M. Munoz, R. Doldan, G. Leger, E.O. Rodriguez-Villegas, A tissue impedance measurement chip for myocardial ischemia detection. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2620–2628 (2005)

    Article  Google Scholar 

  40. J. Wtorek, L. Jozefiak, A. Polinski, J. Siebert, An averaging two-electrode probe for monitoring changes in myocardial conductivity evoked by ischemia. IEEE Trans. Biomed. Eng. 49(3), 240–246 (2002)

    Article  Google Scholar 

  41. E. Marzec, K. Wachal, The electrical properties of leg skin in normal individuals and in patients with ischemia. Bioelectrochem. Bioenerg. 49(1), 73–75 (1999)

    Article  Google Scholar 

  42. S. Kun, R.A. Peura, Tissue ischemia detection using impedance spectroscopy, in Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers, (1994), pp. 868–869

    Google Scholar 

  43. T. Süselbeck et al., In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes. Basic Res. Cardiol. 100(1), 28–34 (2004)

    Article  Google Scholar 

  44. P. Kassanos, R.K. Iles, R.H. Bayford, A. Demosthenous, Towards the development of an electrochemical biosensor for hCGβ detection. Physiol. Meas. 29(6), S241–S254 (2008)

    Article  Google Scholar 

  45. F. Segura-Quijano, J. Sacristán-Riquelme, J. García-Cantón, M.T. Osés, A. Baldi, Towards fully integrated wireless impedimetric sensors. Sensors 10(4), 4071–4082 (2010)

    Article  Google Scholar 

  46. A. Radu et al., Diagnostic of functionality of polymer membrane—based ion selective electrodes by impedance spectroscopy. Anal. Methods 2(10), 1490–1498 (2010)

    Article  Google Scholar 

  47. P. Kassanos, A. Demosthenous, R.H. Bayford, Towards an optimized design for tetrapolar affinity-based impedimetric immunosensors for lab-on-a-chip applications, in IEEE Biomedical Circuits and Systems Conference, 2008. BioCAS, (2008), pp. 141–144

    Google Scholar 

  48. P. Kassanos, A. Demosthenous, R.H. Bayford, Comparison of tetrapolar injection-measurement techniques for coplanar affinity-based impedimetric immunosensors, in IEEE Biomedical Circuits and Systems Conference, 2008. BioCAS, (2008), pp. 317–320

    Google Scholar 

  49. P. Kassanos, A. Demosthenous, R.H. Bayford, Optimization of bipolar and tetrapolar impedance biosensors, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), (2010), pp. 1512–1515

    Google Scholar 

  50. P. Kassanos, H.M.D. Ip, G.-Z. Yang, A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), (2015), pp. 1–6

    Google Scholar 

  51. S. Grimnes, Ø.G. Martinsen, Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. J. Phys. Appl. Phys. 40(1), 9–14 (2007)

    Article  Google Scholar 

  52. B.H. Brown, A.J. Wilson, P. Bertemes-Filho, Bipolar and tetrapolar transfer impedance measurements from volume conductor. Electron. Lett. 36(25), 2060–2062 (2000)

    Article  Google Scholar 

  53. M. Genescà et al., Electrical bioimpedance measurement during hypothermic rat kidney preservation for assessing ischemic injury. Biosens. Bioelectron. 20(9), 1866–1871 (2005)

    Article  Google Scholar 

  54. B. Sanchez, G. Vandersteen, R. Bragos, J. Schoukens, Basics of broadband impedance spectroscopy measurements using periodic excitations. Meas. Sci. Technol. 23(10), 105501 (2012)

    Article  Google Scholar 

  55. B. Sanchez, X. Fernandez, S. Reig, R. Bragos, An FPGA-based frequency response analyzer for multisine and stepped sine measurements on stationary and time-varying impedance. Meas. Sci. Technol. 25(1), 015501 (2014)

    Article  Google Scholar 

  56. A.S. Tucker, R.M. Fox, R.J. Sadleir, Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation. IEEE Trans. Biomed. Circuits Syst. 7(1), 63–70 (2013)

    Article  Google Scholar 

  57. T. Sun, S. Gawad, C. Bernabini, N.G. Green, H. Morgan, Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas. Sci. Technol. 18(9), 2859–2868 (2007)

    Article  Google Scholar 

  58. J. Ojarand, M. Min, P. Annus, Crest factor optimization of the multisine waveform for bioimpedance spectroscopy. Physiol. Meas. 35(6), 1019–1033 (2014)

    Google Scholar 

  59. Y. Yang, F. Zhang, K. Tao, B. Sanchez, H. Wen, Z. Teng, An improved crest factor minimization algorithm to synthesize multisines with arbitrary spectrum. Physiol. Meas. 36(5), 895–910 (2015)

    Article  Google Scholar 

  60. F. Seoane, R. Macías, R. Bragós, K. Lindecrantz, Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations. Meas. Sci. Technol. 22(11), 115801 (2011)

    Article  Google Scholar 

  61. P. Bertemes-Filho, B.H. Brown, A.J. Wilson, A comparison of modified Howland circuits as current generators with current mirror type circuits. Physiol. Meas. 21(1), 1–6 (2000)

    Article  Google Scholar 

  62. H. Hong, M. Rahal, A. Demosthenous, R.H. Bayford, Comparison of a new integrated current source with the modified Howland circuit for EIT applications. Physiol. Meas. 30(10), 999–1007 (2009)

    Article  Google Scholar 

  63. A.C. Ivorra, Contributions to the measurement of electrical impedance for living tissue ischemia injury monitoring—OpenThesis, Universitat Politécnica de Catalunya, 2005

    Google Scholar 

  64. P. Kassanos, I.F. Triantis, A. Demosthenous, A CMOS magnitude/phase measurement chip for impedance spectroscopy. IEEE Sens. J. 13(6), 2229–2236 (2013)

    Article  Google Scholar 

  65. Y. Yang, J. Wang, G. Yu, F. Niu, P. He, Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy. Physiol. Meas. 27(12), 1293–1310 (2006)

    Article  Google Scholar 

  66. P. Kassanos, L. Constantinou, I.F. Triantis, A. Demosthenous, An integrated analog readout for multi-frequency bioimpedance measurements. IEEE Sens. J. 14(8), 2792–2800 (2014)

    Article  Google Scholar 

  67. R. Pallás-Areny, J.G. Webster, Analog Signal Processing (Wiley, New York, 1999)

    Google Scholar 

  68. R. Gonzalez-Landaeta, O. Casas, R. Pallas-Areny, Heart rate detection from plantar bioimpedance measurements. IEEE Trans. Biomed. Eng. 55(3), 1163–1167 (2008)

    Article  Google Scholar 

  69. R. Pallas-Areny, O. Casas, A novel differential synchronous demodulator for AC signals. IEEE Trans. Instrum. Meas. 45(2), 413–416 (1996)

    Article  Google Scholar 

  70. R. Pallas-Areny, J.G. Webster, Bioelectric impedance measurements using synchronous sampling. IEEE Trans. Biomed. Eng. 40(8), 824–829 (1993)

    Article  Google Scholar 

  71. C. Margo, J. Katrib, M. Nadi, A. Rouane, A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip. Physiol. Meas. 34(4), 391–405 (2013)

    Article  Google Scholar 

  72. N. Mehmood, A. Hariz, R. Fitridge, N.H. Voelcker, Applications of modern sensors and wireless technology in effective wound management. J. Biomed. Mater. Res. B Appl. Biomater. 102(4), 885–895 (2014)

    Article  Google Scholar 

  73. R.C. Webb et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12(10), 938–944 (2013)

    Article  Google Scholar 

  74. A.C. Paglinawan, Y.-H. Wang, S.-C. Cheng, C.-C. Chuang, W.-Y. Chung, CMOS temperature sensor with constant power consumption multi-level comparator for implantable bio-medical devices. Electron. Lett. 45(25), 1291–1292 (2009)

    Article  Google Scholar 

  75. L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014)

    Google Scholar 

  76. F. Graichen, G. Bergmann, A. Rohlmann, Hip endoprosthesis for in vivo measurement of joint force and temperature. J. Biomech. 32(10), 1113–1117 (1999)

    Article  Google Scholar 

  77. D.P. Jones, Biomedical Sensors (Momentum Press, New York, 2010)

    Google Scholar 

  78. D. Li (ed.) Resistance thermometers, in Encyclopedia of Microfluidics and Nanofluidics (Springer, US, 2008), pp. 1790–1790

    Google Scholar 

  79. D.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  Google Scholar 

  80. W.-H. Yeo et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)

    Article  Google Scholar 

  81. D.-H. Kim et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10(4), 316–323 (2011)

    Article  Google Scholar 

  82. P.R.N. Childs, J.R. Greenwood, C.A. Long, Review of temperature measurement. Rev. Sci. Instrum. 71(8), 2959–2978 (2000)

    Article  Google Scholar 

  83. A. BaHammam, Comparison of nasal prong pressure and thermistor measurements for detecting respiratory events during sleep. Respiration 71(4), 385–390 (2004)

    Article  Google Scholar 

  84. J. Fei, I. Pavlidis, Thermistor at a distance: unobtrusive measurement of breathing. IEEE Trans. Biomed. Eng. 57(4), 988–998 (2010)

    Article  Google Scholar 

  85. E. Jovanov, D. Raskovic, R. Hormigo, Thermistor-based breathing sensor for circadian rhythm evaluation. Biomed. Sci. Instrum. 37, 493–497 (2001)

    Google Scholar 

  86. M.K. Law, A. Bermak, H.C. Luong, A Sub-μW embedded CMOS temperature sensor for RFID food monitoring application. IEEE J. Solid-State Circuits 45(6), 1246–1255 (2010)

    Article  Google Scholar 

  87. M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate pnp transistors. IEEE Sens. J. 4(3), 294–300 (2004)

    Article  Google Scholar 

  88. A.L. Aita, M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, G.C.M. Meijer, Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (±3σ) from −70 °C to 130 °C. IEEE Sens. J. 13(5), 1840–1848 (2013)

    Article  Google Scholar 

  89. K. Souri, Y. Chae, K.A.A. Makinwa, A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of 0.15 °C (3) From 55 to 125 °C. IEEE J. Solid-State Circuits 48(1), 292–301 (2013)

    Article  Google Scholar 

  90. K. Ueno, T. Asai, Y. Amemiya, Low-power temperature-to-frequency converter consisting of subthreshold CMOS circuits for integrated smart temperature sensors. Sens. Actuators Phys. 165(1), 132–137 (2011)

    Article  Google Scholar 

  91. C. Azcona, B. Calvo, N. Medrano, S. Celma, CMOS quasi-digital temperature sensor for battery operated systems. Electron. Lett. 49(21), 1338–1340 (2013)

    Article  Google Scholar 

  92. A. Vaz et al., Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Trans. Circuits Syst. II Express Briefs 57(2), 95–99 (2010)

    Article  Google Scholar 

  93. S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw, D. Sylvester, A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE J. Solid-State Circuits 49(8), 1682–1693 (2014)

    Article  Google Scholar 

  94. F. Khoshnoud, C.W. de Silva, Recent advances in MEMS sensor technology-biomedical applications. IEEE Instrum. Meas. Mag. 15(1), 8–14 (2012)

    Article  Google Scholar 

  95. F. Khoshnoud, C.W. de Silva, Recent advances in MEMS sensor technology-mechanical applications. IEEE Instrum. Meas. Mag. 15(2), 14–24 (2012)

    Article  Google Scholar 

  96. C.-C. Yang, Y.-L. Hsu, A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)

    Article  Google Scholar 

  97. Y.J. Huang et al., A CMOS cantilever-based label-free DNA SoC with improved sensitivity for Hepatitis B virus detection. IEEE Trans. Biomed. Circuits Syst. 7(6), 820–831 (2013)

    Article  Google Scholar 

  98. X. Yu, Y. Tang, H. Zhang, T. Li, W. Wang, Design of high-sensitivity cantilever and its monolithic integration with CMOS circuits. IEEE Sens. J. 7(4), 489–495 (2007)

    Article  Google Scholar 

  99. G. Grimaldi, M. Manto, Neurological tremor: sensors, signal processing and emerging applications. Sensors 10(2), 1399–1422 (2010)

    Article  Google Scholar 

  100. S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. NeuroEngineering Rehabil. 9, 21 (2012)

    Article  Google Scholar 

  101. H. Chen, M. Xue, Z. Mei, S. Bambang Oetomo, W. Chen, A review of wearable sensor systems for monitoring body movements of neonates. Sensors 16(12), 2134 (2016)

    Article  Google Scholar 

  102. T.G. Constandinou, J. Georgiou, A micropower tilt-processing circuit. IEEE Trans. Biomed. Circuits Syst. 3(6), 363–369 (2009)

    Article  Google Scholar 

  103. H. Zeng, Y. Zhao, Sensing movement: microsensors for body motion measurement. Sensors 11(1), 638–660 (2011)

    Article  Google Scholar 

  104. C.M. Andreou, Y. Pahitas, J. Georgiou, Bio-inspired micro-fluidic angular-rate sensor for vestibular prostheses. Sensors 14(7), 13173–13185 (2014)

    Article  Google Scholar 

  105. S. Kon, R. Horowitz, A high-resolution MEMS piezoelectric strain sensor for structural vibration detection. IEEE Sens. J. 8(12), 2027–2035 (2008)

    Article  Google Scholar 

  106. Y.M. Wang, P.K. Chan, H.K.H. Li, S.E. Ong, A low-power highly sensitive capacitive accelerometer IC using auto-zero time-multiplexed differential technique. IEEE Sens. J. 15(11), 6179–6191 (2015)

    Article  Google Scholar 

  107. G. Langfelder, A.F. Longoni, A. Tocchio, E. Lasalandra, MEMS motion sensors based on the variations of the fringe capacitances. IEEE Sens. J. 11(4), 1069–1077 (2011)

    Article  Google Scholar 

  108. C.M. Sun, M.H. Tsai, Y.C. Liu, W. Fang, Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique. IEEE Trans. Electron Devices 57(7), 1670–1679 (2010)

    Article  Google Scholar 

  109. S. Tez, U. Aykutlu, M.M. Torunbalci, T. Akin, A Bulk-micromachined three-axis capacitive MEMS accelerometer on a single die. J. Microelectromechanical Syst. 24(5), 1264–1274 (2015)

    Article  Google Scholar 

  110. M.H. Tsai, Y.C. Liu, W. Fang, A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes. J. Microelectromechanical Syst. 21(6), 1329–1337 (2012)

    Article  Google Scholar 

  111. M.H. Tsai, Y.C. Liu, K.C. Liang, W. Fang, Monolithic CMOS-MEMS pure oxide tri-axis accelerometers for temperature stabilization and performance enhancement. J. Microelectromechanical Syst. 24(6), 1916–1927 (2015)

    Article  Google Scholar 

  112. U. Krishnamoorthy et al., In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuators Phys. 145–146, 283–290 (2008)

    Article  Google Scholar 

  113. G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, S. Ke, Research development of silicon MEMS gyroscopes: a review. Microsyst. Technol. 21(10), 2053–2066 (2015)

    Article  Google Scholar 

  114. S. Dellea, F. Giacci, A.F. Longoni, G. Langfelder, In-Plane and out-of-plane MEMS gyroscopes based on piezoresistive NEMS detection. J. Microelectromechanical Syst. 24(6), 1817–1826 (2015)

    Article  Google Scholar 

  115. S. Sonmezoglu, S.E. Alper, T. Akin, An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth. J. Microelectromechanical Syst. 23(2), 284–297 (2014)

    Article  Google Scholar 

  116. S.E. Alper, Y. Temiz, T. Akin, A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope. J. Microelectromechanical Syst. 17(6), 1418–1429 (2008)

    Article  Google Scholar 

  117. Y. Hui, T. Nan, N.X. Sun, M. Rinaldi, High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J. Microelectromechanical Syst. 24(1), 134–143 (2015)

    Article  Google Scholar 

  118. G. Langfelder, C. Buffa, A. Frangi, A. Tocchio, E. Lasalandra, A. Longoni, Z-axis magnetometers for MEMS inertial measurement units using an industrial process. IEEE Trans. Ind. Electron. 60(9), 3983–3990 (2013)

    Article  Google Scholar 

  119. K. Sinha, M. Tabib-Azar, 27 pT silicon nitride MEMS magnetometer for brain imaging. IEEE Sens. J. 16(17), 6551–6558 (2016)

    Article  Google Scholar 

  120. V. Kumar, A. Ramezany, M. Mahdavi, S. Pourkamali, Amplitude modulated Lorentz force MEMS magnetometer with picotesla sensitivity. J. Micromechanics Microengineering 26(10), 105021 (2016)

    Article  Google Scholar 

  121. D. Sheng, S. Li, N. Dural, M.V. Romalis, Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett. 110(16), 160802 (2013)

    Article  Google Scholar 

  122. P. Minotti, S. Brenna, G. Laghi, A.G. Bonfanti, G. Langfelder, A.L. Lacaita, A Sub–400-nT/sqrt(HZ), 775-uW, multi-loop MEMS magnetometer with integrated readout electronics. J. Microelectromechanical Syst. 24(6), 1938–1950 (2015)

    Article  Google Scholar 

  123. J.L. Tanner, D. Mousadakos, K. Giannakopoulos, E. Skotadis, D. Tsoukalas, High strain sensitivity controlled by the surface density of platinum nanoparticles. Nanotechnology 23(28), 285501 (2012)

    Article  Google Scholar 

  124. M. Borghetti, E. Sardini, M. Serpelloni, Preliminary study of resistive sensors in inkjet technology for force measurements in biomedical applications, in 2014 11th International Multi-Conference on Systems, Signals Devices (SSD), (2014), pp. 1–4

    Google Scholar 

  125. V. Correia, C. Caparros, C. Casellas, L. Francesch, J.G. Rocha, S. Lanceros-Mendez, Development of inkjet printed strain sensors. Smart Mater. Struct. 22(10), 105028 (2013)

    Article  Google Scholar 

  126. B. Ando, S. Baglio, All-inkjet printed strain sensors. IEEE Sens. J. 13(12), 4874–4879 (2013)

    Article  Google Scholar 

  127. A. Bessonov, M. Kirikova, S. Haque, I. Gartseev, M.J.A. Bailey, Highly reproducible printable graphite strain gauges for flexible devices. Sens. Actuators Phys. 206, 75–80 (2014)

    Article  Google Scholar 

  128. O. Kanoun et al., Flexible carbon nanotube films for high performance strain sensors. Sensors 14(6), 10042–10071 (2014)

    Article  Google Scholar 

  129. Y. Jia, K. Sun, F.J. Agosto, M.T. Quiñones, Design and characterization of a passive wireless strain sensor. Meas. Sci. Technol. 17(11), 2869–2876 (2006)

    Article  Google Scholar 

  130. K.J. Loh, J.P. Lynch, N.A. Kotov, Inductively coupled nanocomposite wireless strain and pH sensors. Smart Struct. Syst. 4(5), 531–548 (2008)

    Article  Google Scholar 

  131. F. Umbrecht et al., Wireless implantable passive strain sensor: design, fabrication and characterization. J. Micromechanics Microengineering 20(8), 085005 (2010)

    Article  Google Scholar 

  132. E.H. Ledet, D. D’Lima, P. Westerhoff, J.A. Szivek, R.A. Wachs, G. Bergmann, Implantable sensor technology: from research to clinical practice. J. Am. Acad. Orthop. Surg. 20(6), 383–392 (2012)

    Article  Google Scholar 

  133. W. Hasenkamp et al., Design and test of a MEMS strain-sensing device for monitoring artificial knee implants. Biomed. Microdevices 15(5), 831–839 (2013)

    Article  Google Scholar 

  134. F. Graichen, R. Arnold, A. Rohlmann, G. Bergmann, Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Trans. Biomed. Eng. 54(2), 253–261 (2007)

    Article  Google Scholar 

  135. K.C. McGilvray et al., Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing. J. Orthop. Res. 33(10), 1439–1446 (2015)

    Article  Google Scholar 

  136. R. Melik et al., Nested metamaterials for wireless strain sensing. IEEE J. Sel. Top. Quantum Electron. 16(2), 450–458 (2010)

    Article  Google Scholar 

  137. R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, H.V. Demir, Circular high-Q resonating isotropic strain sensors with large shift of resonance frequency under stress. Sensors 9(12), 9444–9451 (2009)

    Article  Google Scholar 

  138. W. Claes, W. Sansen, R. Puers, A 40-μA/channel compensated 18-channel strain gauge measurement system for stress monitoring in dental implants. IEEE J. Solid-State Circuits 37(3), 293–301 (2002)

    Article  Google Scholar 

  139. W. Claes, R. Puers, W. Sansen, M.D. Cooman, J. Duyck, I. Naert, A low power miniaturized autonomous data logger for dental implants. Sens. Actuators Phys. 97–98, 548–556 (2002)

    Article  Google Scholar 

  140. G.Y. Yang, G. Johnson, W.C. Tang, J.H. Keyak, Parylene-based strain sensors for bone. IEEE Sens. J. 7(12), 1693–1697 (2007)

    Article  Google Scholar 

  141. C.P. Geffre, P.R. Finkbone, C.L. Bliss, D.S. Margolis, J.A. Szivek, Load measurement accuracy from sensate scaffolds with and without a cartilage surface. J. Investig. Surg. Off. J. Acad. Surg. Res. 23(3), 156–162 (2010)

    Article  Google Scholar 

  142. E.L. Tan, B.D. Pereles, B. Horton, R. Shao, M. Zourob, K.G. Ong, Implantable biosensors for real-time strain and pressure monitoring. Sensors 8(10), 6396–6406 (2008)

    Article  Google Scholar 

  143. L. Yu, B.J. Kim, E. Meng, Chronically implanted pressure sensors: challenges and state of the field. Sensors 14(11), 20620–20644 (2014)

    Article  Google Scholar 

  144. P.R. Pfau et al., Sphincter of Oddi manometry. Gastrointest. Endosc. 74(6), 1175–1180 (2011)

    Article  Google Scholar 

  145. R. Tan et al., Development of a fully implantable wireless pressure monitoring system. Biomed. Microdevices 11(1), 259–264 (2008)

    Article  Google Scholar 

  146. J. Melgaard, N.J.M. Rijkhoff, Detecting the onset of urinary bladder contractions using an implantable pressure sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 700–708 (2011)

    Article  Google Scholar 

  147. P. Bingger, M. Zens, P. Woias, Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring. Biomed. Microdevices 14(3), 573–581 (2012)

    Article  Google Scholar 

  148. “St. Jude Medical CardioMEMSTM HF System.” [Online]. Available: http://www.sjm.com/cardiomems

  149. “St. Jude Medical CardioMEMS HF System Prompts Changes That Improve Heart Failure Management and Reduce Hospitalizations | Business Wire,” 04-Apr–2016. [Online]. Available: http://www.businesswire.com/news/home/20160404005737/en/St.-Jude-Medical-CardioMEMS-HF-System-Prompts. Accessed 07 Feb 2017

  150. “Merit Sensor BP SERIES.” [Online]. Available: https://meritsensor.com/products/bp-series/. Accessed 28 Jan 2016

  151. K.-H. Shin, C.-R. Moon, T.-H. Lee, C.-H. Lim, Y.-J. Kim, Flexible wireless pressure sensor module. Sens. Actuators Phys. 123–124, 30–35 (2005)

    Article  Google Scholar 

  152. P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid-State Circuits 44(12), 3631–3644 (2009)

    Article  Google Scholar 

  153. N.J. Cleven et al., A novel fully implantable wireless sensor system for monitoring hypertension patients. IEEE Trans. Biomed. Eng. 59(11), 3124–3130 (2012)

    Article  Google Scholar 

  154. O.H. Murphy et al., Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor. Biomed. Microdevices 15(5), 737–749 (2013)

    Article  Google Scholar 

  155. C.-C. Chiang, C.-C.K. Lin, M.-S. Ju, An implantable capacitive pressure sensor for biomedical applications. Sens. Actuators Phys. 134(2), 382–388 (2007)

    Article  Google Scholar 

  156. M.K. Filippidou, E. Tegou, V. Tsouti, S. Chatzandroulis, A flexible strain sensor made of graphene nanoplatelets/polydimethylsiloxane nanocomposite. Microelectron. Eng. 142, 7–11 (2015)

    Article  Google Scholar 

  157. K.G. Ong, C.A. Grimes, A resonant printed-circuit sensor for remote query monitoring of environmental parameters. Smart Mater. Struct. 9(4), 421–428 (2000)

    Article  Google Scholar 

  158. J.C.-H. Lin, Y. Zhao, P.-J. Chen, M. Humayun, Y.-C. Tai, Feeling the pressure: a parylene-based intraocular pressure sensor. IEEE Nanotechnol. Mag. 6(3), 8–16 (2012)

    Article  Google Scholar 

  159. P.-J. Chen, D.C. Rodger, S. Saati, M.S. Humayun, Y.-C. Tai, Microfabricated implantable parylene-based wireless passive intraocular pressure sensors. J. Microelectromechanical Syst. 17(6), 1342–1351 (2008)

    Article  Google Scholar 

  160. P.-J. Chen, S. Saati, R. Varma, M.S. Humayun, Y.-C. Tai, Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. J. Microelectromechanical Syst. 19(4), 721–734 (2010)

    Article  Google Scholar 

  161. P.K. Eide, A. Bakken, The baseline pressure of intracranial pressure (ICP) sensors can be altered by electrostatic discharges. Biomed. Eng. OnLine 10(1), 75 (2011)

    Article  Google Scholar 

  162. “Codman Neuro ICP EXPRESS® Monitoring System.” [Online]. Available: https://www.depuysynthes.com/hcp/codman-neuro/products/qs/ICP-EXPRESS-Monitoring-System. Accessed 28 Jan 2016

  163. “Integra Camino Intracranial Pressure Monitor.” [Online]. Available: http://www.integralife.com/index.aspx?redir=detailproduct&Product=757&ProductName=Integra%AE%20Camino%AE%20Intracranial%20Pressure%20Monitor%20%28CAM02%29&ProductLineName=ICP%20Monitoring&ProductLineID=11&PA=neurosurgeon. Accessed: 28 Jan 2016

  164. “Integra Camino Intracranial Pressure Monitor Brochure.”

    Google Scholar 

  165. “Integra Camino Intracranial Pressure Monitoring Kit Brochure.”

    Google Scholar 

  166. S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275–309 (2008)

    Article  Google Scholar 

  167. D.J. Edell, V.V. Toi, V.M. McNeil, L.D. Clark, Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng. 39(6), 635–643 (1992)

    Article  Google Scholar 

  168. D.H. Szarowski et al., Brain responses to micro-machined silicon devices. Brain Res. 983(1–2), 23–35 (2003)

    Article  Google Scholar 

  169. R. Biran, D.C. Martin, P.A. Tresco, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1), 115–126 (2005)

    Article  Google Scholar 

  170. J.K. Niparko, R.A. Altschuler, J.A. Wiler, X. Xue, D.J. Anderson, Surgical implantation and biocompatibility of central nervous system auditory prostheses. Ann. Otol. Rhinol. Laryngol. 98(12), 965–970 (1989)

    Article  Google Scholar 

  171. Y.-T. Kim, R.W. Hitchcock, M.J. Bridge, P.A. Tresco, Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials 25(12), 2229–2237 (2004)

    Article  Google Scholar 

  172. M.B.A. Fontes, Electrodes for bio-application: recording and stimulation. J. Phys: Conf. Ser. 421(1), 012019 (2013)

    Google Scholar 

  173. A.R. Harris, S.J. Morgan, J. Chen, R.M.I. Kapsa, G.G. Wallace, A.G. Paolini, Conducting polymer coated neural recording electrodes. J. Neural Eng. 10(1), 016004 (2013)

    Article  Google Scholar 

  174. F. Vitale, S.R. Summerson, B. Aazhang, C. Kemere, M. Pasquali, Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9(4), 4465–4474 (2015)

    Article  Google Scholar 

  175. Z. Lertmanorat, F.W. Montague, D.M. Durand, A flat interface nerve electrode with integrated multiplexer. IEEE Trans. Neural Syst. Rehabil. Eng. 17(2), 176–182 (2009)

    Article  Google Scholar 

  176. K. Najafi, Solid-state microsensors for cortical nerve recordings. IEEE Eng. Med. Biol. Mag. 13(3), 375–387 (1994)

    Article  Google Scholar 

  177. C.G. Herrera, A.R. Adamantidis, An integrated microprobe for the brain. Nat. Biotechnol. 33(3), 259–260 (2015)

    Article  Google Scholar 

  178. A.N. van den Pol, Neuropeptide transmission in brain circuits. Neuron 76(1), 98–115 (2012)

    Article  Google Scholar 

  179. A. Canales et al., Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33(3), 277–284 (2015)

    Article  Google Scholar 

  180. P. Fattahi, G. Yang, G. Kim, M.R. Abidian, A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014)

    Article  Google Scholar 

  181. M.R. Abidian, D.C. Martin, Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9), 1273–1283 (2008)

    Article  Google Scholar 

  182. X. Cui, D.C. Martin, Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators B Chem. 89(1–2), 92–102 (2003)

    Article  Google Scholar 

  183. L.R. Hochberg et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  Google Scholar 

  184. S. Negi, R. Bhandari, L. Rieth, R. Van Wagenen, F. Solzbacher, Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide. J. Neurosci. Methods 186(1), 8–17 (2010)

    Article  Google Scholar 

  185. A. Goryu, R. Numano, A. Ikedo, M. Ishida, T. Kawano, Nanoscale tipped microwire arrays enhance electrical trap and depth injection of nanoparticles. Nanotechnology 23(41), 415301 (2012)

    Article  Google Scholar 

  186. T. Stieglitz, Development of a micromachined epiretinal vision prosthesis. J. Neural Eng. 6(6), 065005 (2009)

    Article  Google Scholar 

  187. D.C. Rodger et al., Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens. Actuators B Chem. 132(2), 449–460 (2008)

    Article  Google Scholar 

  188. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6(3), 036003 (2009)

    Article  Google Scholar 

  189. D.-H. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)

    Article  Google Scholar 

  190. S.P. Lacour et al., Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 48(10), 945–954 (2010)

    Article  Google Scholar 

  191. C. Hassler, T. Boretius, T. Stieglitz, Polymers for neural implants. J. Polym. Sci., Part B: Polym. Phys. 49(1), 18–33 (2011)

    Article  Google Scholar 

  192. P. Negredo, J. Castro, N. Lago, X. Navarro, C. Avendaño, Differential growth of axons from sensory and motor neurons through a regenerative electrode: A stereological, retrograde tracer, and functional study in the rat. Neuroscience 128(3), 605–615 (2004)

    Article  Google Scholar 

  193. K.W. Meacham, R.J. Giuly, L. Guo, S. Hochman, S.P. DeWeerth, A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdevices 10(2), 259–269 (2008)

    Article  Google Scholar 

  194. J.D. MacDonald, K.J. Fisher, Technique for steering spinal cord stimulator electrode. Oper. Neurosurg. 69(1), ons83–ons87 (2011)

    Article  Google Scholar 

  195. X. Kang, J.Q. Liu, H. Tian, B. Yang, Y. Nuli, C. Yang, Self-closed parylene cuff electrode for peripheral nerve recording. J. Microelectromechanical Syst. 24(2), 319–332 (2015)

    Article  Google Scholar 

  196. H. Yu, W. Xiong, H. Zhang, W. Wang, Z. Li, A parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J. Microelectromechanical Syst. 23(5), 1025–1035 (2014)

    Article  Google Scholar 

  197. A. Branner, R.B. Stein, R.A. Normann, Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J. Neurophysiol. 85(4), 1585–1594 (2001)

    Article  Google Scholar 

  198. J. Zariffa, M.K. Nagai, Z.J. Daskalakis, M.R. Popovic, Influence of the number and location of recording contacts on the selectivity of a nerve cuff electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 17(5), 420–427 (2009)

    Article  Google Scholar 

  199. S.M. Lawrence, G.S. Dhillon, K.W. Horch, Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J. Neurosci. Methods 131(1–2), 9–26 (2003)

    Article  Google Scholar 

  200. S.M. Lawrence, G.S. Dhillon, W. Jensen, K. Yoshida, K.W. Horch, Acute peripheral nerve recording Characteristics of polymer-based longitudinal intrafascicular electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 12(3), 345–348 (2004)

    Article  Google Scholar 

  201. K. Warwick et al., The application of implant technology for cybernetic systems. Arch. Neurol. 60(10), 1369–1373 (2003)

    Article  Google Scholar 

  202. M.T. Alt, E. Fiedler, L. Rudmann, J.S. Ordonez, P. Ruther, T. Stieglitz, Let there be light - optoprobes for neural implants. Proc. IEEE 105(1), 101–138 (2017)

    Article  Google Scholar 

  203. M. HajjHassan, V. Chodavarapu, S. Musallam, NeuroMEMS: neural probe microtechnologies. Sensors 8(10), 6704–6726 (2008)

    Article  Google Scholar 

  204. K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke, K. Najafi, Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92(1), 76–97 (2004)

    Article  Google Scholar 

  205. E.M. Maynard, C.T. Nordhausen, R.A. Normann, The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102(3), 228–239 (1997)

    Article  Google Scholar 

  206. G.G. Naples, J.T. Mortimer, A. Scheiner, J.D. Sweeney, A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans. Biomed. Eng. 35(11), 905–916 (1988)

    Article  Google Scholar 

  207. J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)

    Article  Google Scholar 

  208. A.B. Schwartz, X.T. Cui, D.J. Weber, D.W. Moran, Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1), 205–220 (2006)

    Article  Google Scholar 

  209. M. Kindlundh, P. Norlin, U.G. Hofmann, A neural probe process enabling variable electrode configurations. Sens. Actuators B Chem. 102(1), 51–58 (2004)

    Article  Google Scholar 

  210. K.-K. Lee et al., Polyimide-based intracortical neural implant with improved structural stiffness. J. Micromechanics Microengineering 14(1), 32–37 (2004)

    Article  Google Scholar 

  211. P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter, D.R. Kipke, Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48(3), 361–371 (2001)

    Article  Google Scholar 

  212. A. Mercanzini et al., Demonstration of cortical recording using novel flexible polymer neural probes. Sens. Actuators Phys. 143(1), 90–96 (2008)

    Article  Google Scholar 

  213. A.C. Patil, N.V. Thakor, Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Med. Biol. Eng. Comput. 54(1), 23–44 (2016)

    Article  Google Scholar 

  214. S. Musallam, M.J. Bak, P.R. Troyk, R.A. Andersen, A floating metal microelectrode array for chronic implantation. J. Neurosci. Methods 160(1), 122–127 (2007)

    Article  Google Scholar 

  215. R.A. Normann, E.M. Maynard, P.J. Rousche, D.J. Warren, A neural interface for a cortical vision prosthesis. Vision. Res. 39(15), 2577–2587 (1999)

    Article  Google Scholar 

  216. A. Jackson, E.E. Fetz, Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J. Neurophysiol. 98(5), 3109–3118 (2007)

    Article  Google Scholar 

  217. G. Lehew, M.A.L. Nicolelis, State-of-the-art microwire array design for chronic neural recordings in behaving animals, in Methods for Neural Ensemble Recordings, Second Edition (CRC Press, Boca Raton, FL, 2007), pp. 1–20

    Google Scholar 

  218. D.A. Schwarz et al., Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11(6), 670–676 (2014)

    Article  Google Scholar 

  219. T.D.Y. Kozai et al., Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065–1073 (2012)

    Article  Google Scholar 

  220. D.R. Kipke, R.J. Vetter, J.C. Williams, J.F. Hetke, Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 151–155 (2003)

    Article  Google Scholar 

  221. P.J. Rousche, R.A. Normann, Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82(1), 1–15 (1998)

    Article  Google Scholar 

  222. Å.B. Vallbo, K.-E. Hagbarth, Activity from skin mechanoreceptors recorded percutaneously in awake human subjects. Exp. Neurol. 21(3), 270–289 (1968)

    Article  Google Scholar 

  223. N. Lago, K. Yoshida, K.P. Koch, X. Navarro, Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans. Biomed. Eng. 54(2), 281–290 (2007)

    Article  Google Scholar 

  224. T. Boretius et al., A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26(1), 62–69 (2010)

    Article  Google Scholar 

  225. H.A.C. Wark et al., A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 10(4), 045003 (2013)

    Article  Google Scholar 

  226. H. Xu et al., Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 35(1), 225–235 (2014)

    Article  Google Scholar 

  227. P.B. Yoo, D.M. Durand, Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans. Biomed. Eng. 52(8), 1461–1469 (2005)

    Article  Google Scholar 

  228. W.M. Grill, Jr., M.D. Tarler, J.T. Mortimer, Implantable helical spiral cuff electrode, US5505201 A, 09 Apr 1996

    Google Scholar 

  229. T. Stieglitz, M. Schuetter, K.P. Koch, Implantable biomedical microsystems for neural prostheses. IEEE Eng. Med. Biol. Mag. 24(5), 58–65 (2005)

    Article  Google Scholar 

  230. G. Márton et al., In vivo measurements with robust silicon-based multielectrode arrays with extreme shaft lengths. IEEE Sens. J. 13(9), 3263–3269 (2013)

    Article  Google Scholar 

  231. K.D. Wise, A.M. Sodagar, Y. Yao, M.N. Gulari, G.E. Perlin, K. Najafi, Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96(7), 1184–1202 (2008)

    Article  Google Scholar 

  232. N. Xue et al., Polymeric C-shaped cuff electrode for recording of peripheral nerve signal. Sens. Actuators B Chem. 210, 640–648 (2015)

    Article  Google Scholar 

  233. S.B. Brummer, L.S. Robblee, F.T. Hambrecht, Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann. N. Y. Acad. Sci. 405(1), 159–171 (1983)

    Article  Google Scholar 

  234. G.E. Loeb, R.A. Peck, Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J. Neurosci. Methods 64(1), 95–103 (1996)

    Article  Google Scholar 

  235. K.H. Polasek, H.A. Hoyen, M.W. Keith, D.J. Tyler, Human nerve stimulation thresholds and selectivity using a multi-contact nerve cuff electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 76–82 (2007)

    Article  Google Scholar 

  236. M.A. Lebedev, M.A.L. Nicolelis, Brain–machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  237. L. Kenney et al., An implantable two channel drop foot stimulator: initial clinical results. Artif. Organs 26(3), 267–270 (2002)

    Article  Google Scholar 

  238. D.J. Tyler, D.M. Durand, A slowly penetrating interfascicular nerve electrode for selective activation of peripheral nerves. IEEE Trans. Rehabil. Eng. 5(1), 51–61 (1997)

    Article  Google Scholar 

  239. A. Kundu, K.R. Harreby, K. Yoshida, T. Boretius, T. Stieglitz, W. Jensen, Stimulation selectivity of the ‘thin-film longitudinal intrafascicular electrode’ (tfLIFE) and the ‘transverse intrafascicular multi-channel electrode’ (TIME) in the large nerve animal model. IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 400–410 (2014)

    Article  Google Scholar 

  240. S. Raspopovic, M. Capogrosso, S. Micera, A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 333–344 (2011)

    Article  Google Scholar 

  241. X. Navarro, T.B. Krueger, N. Lago, S. Micera, T. Stieglitz, P. Dario, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10(3), 229–258 (2005)

    Article  Google Scholar 

  242. L.A. Geddes, R. Roeder, Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng. 31(7), 879–890 (2003)

    Article  Google Scholar 

  243. S.H. Cho, H.M. Lu, L. Cauller, M.I. Romero-Ortega, J.B. Lee, G.A. Hughes, Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sens. J. 8(11), 1830–1836 (2008)

    Article  Google Scholar 

  244. S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, T. Suzuki, Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5), 519–523 (2005)

    Article  Google Scholar 

  245. S. Takeuchi, T. Suzuki, K. Mabuchi, H. Fujita, 3D flexible multichannel neural probe array. J. Micromechanics Microengineering 14(1), 104–107 (2004)

    Article  Google Scholar 

  246. S.E. Lee et al., A flexible depth probe using liquid crystal polymer. IEEE Trans. Biomed. Eng. 59(7), 2085–2094 (2012)

    Article  Google Scholar 

  247. K. Lee, J. He, R. Clement, S. Massia, B. Kim, Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel. Biosens. Bioelectron. 20(2), 404–407 (2004)

    Article  Google Scholar 

  248. P.E.K. Donaldson, Aspects of silicone rubber as an encapsulant for neurological prostheses. Med. Biol. Eng. Comput. 29(1), 34–39 (1991)

    Article  Google Scholar 

  249. N.D. Donaldson, P.E.K. Donaldson, When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neurological prosthesis? I historical background; Pt resting potential; Q studies. Med. Biol. Eng. Comput. 24(1), 41–49 (1986)

    Article  Google Scholar 

  250. J.O. Larsen, M. Thomsen, M. Haugland, T. Sinkjær, Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol. (Berl.) 96(4), 365–378 (1998)

    Article  Google Scholar 

  251. B. Upshaw, T. Sinkjaer, Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes. IEEE Trans. Rehabil. Eng. 6(2), 172–181 (1998)

    Article  Google Scholar 

  252. I.F. Triantis, A. Demosthenous, N. Donaldson, On cuff imbalance and tripolar ENG amplifier configurations. IEEE Trans. Biomed. Eng. 52(2), 314–320 (2005)

    Article  Google Scholar 

  253. A. Demosthenous, J. Taylor, I.F. Triantis, R. Rieger, N. Donaldson, Design of an adaptive interference reduction system for nerve-cuff electrode recording. IEEE Trans. Circuits Syst. Regul. Pap. 51(4), 629–639 (2004)

    Article  Google Scholar 

  254. L.N.S. Andreasen, J.J. Struijk, Signal strength versus cuff length in nerve cuff electrode recordings. IEEE Trans. Biomed. Eng. 49(9), 1045–1050 (2002)

    Article  Google Scholar 

  255. T. Stieglitz, H. Beutel, M. Schuettler, J.-U. Meyer, Micromachined, polyimide-based devices for flexible neural interfaces. Biomed. Microdevices 2(4), 283–294 (2000)

    Article  Google Scholar 

  256. D.T.T. Plachta et al., Blood pressure control with selective vagal nerve stimulation and minimal side effects. J. Neural Eng. 11(3), 036011 (2014)

    Article  Google Scholar 

  257. Z. Xiang et al., Progress of flexible electronics in neural interfacing—a self-adaptive non-invasive neural ribbon electrode for small nerves recording. Adv. Mater. 28(22), 4472–4479 (2016)

    Article  Google Scholar 

  258. E.G.R. Kim et al., 3D silicon neural probe with integrated optical fibers for optogenetic modulation. Lab Chip 15(14), 2939–2949 (2015)

    Article  Google Scholar 

  259. A.B. Kibler, B.G. Jamieson, D.M. Durand, A high aspect ratio microelectrode array for mapping neural activity in vitro. J. Neurosci. Methods 204(2), 296–305 (2012)

    Article  Google Scholar 

  260. Z. Xiang et al., Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J. Micromechanics Microengineering 24(6), 065015 (2014)

    Article  Google Scholar 

  261. D.-W. Park et al., Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014)

    Article  Google Scholar 

  262. D.J. Tyler, D.M. Durand, Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 294–303 (2002)

    Article  Google Scholar 

  263. C. Veraart, W.M. Grill, J.T. Mortimer, Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 40(7), 640–653 (1993)

    Article  Google Scholar 

  264. D.N. Heo et al., Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater. 39, 25–33 (2016)

    Article  Google Scholar 

  265. S.J. Park et al., Functional nerve cuff electrode with controllable anti-inflammatory drug loading and release by biodegradable nanofibers and hydrogel deposition. Sens. Actuators B Chem. 215, 133–141 (2015)

    Article  Google Scholar 

  266. J. Seo, J.H. Wee, J.H. Park, P. Park, J.-W. Kim, S.J. Kim, Nerve cuff electrode using embedded magnets and its application to hypoglossal nerve stimulation. J. Neural Eng. 13(6), 066014 (2016)

    Article  Google Scholar 

  267. Y.J. Lee, H.-J. Kim, S.H. Do, J.Y. Kang, S.H. Lee, Characterization of nerve-cuff electrode interface for biocompatible and chronic stimulating application. Sens. Actuators B Chem. 237, 924–934 (2016)

    Article  Google Scholar 

  268. S. Lee et al., Selective stimulation and neural recording on peripheral nerves using flexible split ring electrodes. Sens. Actuators B Chem. 242, 1165–1170 (2017)

    Article  Google Scholar 

  269. S. Nag, N.V. Thakor, Implantable neurotechnologies: electrical stimulation and applications. Med. Biol. Eng. Comput. 54(1), 63–76 (2016)

    Article  Google Scholar 

  270. S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)

    Article  Google Scholar 

  271. G.S. Wilson, M. Ammam, In vivo biosensors. FEBS J. 274(21), 5452–5461 (2007)

    Article  Google Scholar 

  272. G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)

    Article  Google Scholar 

  273. H. Cao et al., An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring. IEEE Trans. Biomed. Eng. 59(11), 3131–3139 (2012)

    Article  Google Scholar 

  274. H.-J. Chung et al., Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. Adv. Healthc. Mater. 3(1), 59–68 (2014)

    Article  Google Scholar 

  275. E. Lindner et al., In vivo and in vitro testing of microelectronically fabricated planar sensors designed for applications in cardiology. Fresenius J. Anal. Chem. 346(6–9), 584–588 (1993)

    Article  Google Scholar 

  276. V.V. Cosofret, E. Lindner, T.A. Johnson, M.R. Neuman, Planar micro sensors for in vivo myocardial pH measurements. Talanta 41(6), 931–938 (1994)

    Article  Google Scholar 

  277. V.V. Cosofret, M. Erdosy, T.A. Johnson, R.P. Buck, R.B. Ash, M.R. Neuman, Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart. Anal. Chem. 67(10), 1647–1653 (1995)

    Article  Google Scholar 

  278. S.A.M. Marzouk, S. Ufer, R.P. Buck, T.A. Johnson, L.A. Dunlap, W.E. Cascio, Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Anal. Chem. 70(23), 5054–5061 (1998)

    Article  Google Scholar 

  279. J.L. Gonzalez-Guillaumin, D.C. Sadowski, K.V.I.S. Kaler, M.P. Mintchev, Ingestible capsule for impedance and pH monitoring in the esophagus. IEEE Trans. Biomed. Eng. 54(12), 2231–2236 (2007)

    Article  Google Scholar 

  280. I.B. Tahirbegi, M. Mir, J. Samitier, Real-time monitoring of ischemia inside stomach. Biosens. Bioelectron. 40(1), 323–328 (2013)

    Article  Google Scholar 

  281. I.B. Tahirbegi, M. Mir, S. Schostek, M. Schurr, J. Samitier, In vivo ischemia monitoring array for endoscopic surgery. Biosens. Bioelectron. 61, 124–130 (2014)

    Article  Google Scholar 

  282. M. Mir, R. Lugo, I.B. Tahirbegi, J. Samitier, Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications. Sensors 14(7), 11844–11854 (2014)

    Article  Google Scholar 

  283. M. Kubon et al., A microsensor system to probe physiological environments and tissue response, in 2010 IEEE Sensors, (2010), pp. 2607–2611

    Google Scholar 

  284. A. Weltin, B. Enderle, J. Kieninger, G.A. Urban, Multiparametric, flexible microsensor platform for metabolic monitoring. IEEE Sens. J. 14(10), 3345–3351 (2014)

    Article  Google Scholar 

  285. G. Urban et al., Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications. Biosens. Bioelectron. 7(10), 733–739 (1992)

    Article  Google Scholar 

  286. A. Guiseppi-Elie, S. Brahim, G. Slaughter, K.R. Ward, Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sens. J. 5(3), 345–355 (2005)

    Article  Google Scholar 

  287. A.R.A. Rahman, G. Justin, A. Guiseppi-Elie, Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 75–85 (2008)

    Article  Google Scholar 

  288. A.R.A. Rahman, G. Justin, A. Guiseppi-Wilson, A. Guiseppi-Elie, Fabrication and packaging of a dual sensing electrochemical biotransducer for glucose and lactate useful in intramuscular physiologic status monitoring. IEEE Sens. J. 9(12), 1856–1863 (2009)

    Article  Google Scholar 

  289. C.N. Kotanen, A. Guiseppi-Elie, Characterization of a wireless potentiostat for integration with a novel implantable biotransducer. IEEE Sens. J. 14(3), 768–776 (2014)

    Article  Google Scholar 

  290. M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, N.V. Thakor, VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst. 1(1), 63–72 (2007)

    Article  Google Scholar 

  291. M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3(6), 388–397 (2009)

    Article  Google Scholar 

  292. M. Roham et al., A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans. Biomed. Circuits Syst. 2(1), 3–9 (2008)

    Article  Google Scholar 

  293. G. Massicotte, S. Carrara, G. Di Micheli, M. Sawan, A CMOS amperometric system for multi-neurotransmitter detection. IEEE Trans. Biomed. Circuits Syst., 10(3), 731–741 (2016)

    Google Scholar 

  294. P. Valdastri et al., An implantable ZigBee ready telemetric platform for in vivo monitoring of physiological parameters. Sens. Actuators Phys. 142(1), 369–378 (2008)

    Article  Google Scholar 

  295. H. Liu et al., An implantable radio-telemetry system for detecting multiple bio-parameters of a small animal based on wireless energy transmission. Mechatronics 28, 18–26 (2015)

    Article  Google Scholar 

  296. S. Carrara et al., Remote system for monitoring animal models with single-metabolite bio-nano-sensors. IEEE Sens. J. 13(3), 1018–1024 (2013)

    Article  MathSciNet  Google Scholar 

  297. A. Cavallini et al., A subcutaneous biochip for remote monitoring of human metabolism: packaging and biocompatibility assessment. IEEE Sens. J. 15(1), 417–424 (2015)

    Article  Google Scholar 

  298. C. Baj-Rossi et al., Full fabrication and packaging of an implantable multi-panel device for monitoring of metabolites in small animals. IEEE Trans. Biomed. Circuits Syst. 8(5), 636–647 (2014)

    Article  Google Scholar 

  299. F. Xu, G. Yan, K. Zhao, L. Lu, J. Gao, G. Liu, A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract. IEEE Trans. Biomed. Circuits Syst. 8(6), 871–880 (2014)

    Article  Google Scholar 

  300. L. Lu, G. Yan, K. Zhao, F. Xu, An implantable telemetry platform system with ASIC for in vivo monitoring of gastrointestinal physiological information. IEEE Sens. J. 15(6), 3524–3534 (2015)

    Article  Google Scholar 

  301. W.P. Chan et al., A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J. Solid-State Circuits 49(11), 2449–2461 (2014)

    Article  Google Scholar 

  302. C.N. Kotanen, A. Guiseppi-Elie, Monitoring systems and quantitative measurement of biomolecules for the management of trauma. Biomed. Microdevices 15(3), 561–577 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kassanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kassanos, P., Anastasova, S., Yang, GZ. (2018). Electrical and Physical Sensors for Biomedical Implants. In: Yang, GZ. (eds) Implantable Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-69748-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69748-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69747-5

  • Online ISBN: 978-3-319-69748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics