Advertisement

Electrochemical Sensor Designs for Biomedical Implants

  • S. Anastasova
  • P. Kassanos
  • Guang-Zhong Yang
Chapter

Abstract

The need to record directly the sensing target of interest in the vicinity of where a physiological and clinically relevant event takes place, rather than indirectly or through surrogate measures, has led to the need for implantable monitoring devices. In addition to ensuring the sensitivity and specificity of sensor responses, issues related to sensor fouling, drift, biocompatibility, and hermeticity of the packaging are important considerations. This chapter examines the current state of the art of sensing techniques, focusing on electrochemical methods (potentiometry, amperometry, and voltammetry), due to their simplicity in design and fabrication [1], as well as low-power operation.

List of Acronyms

AIROF

Anodic iridium oxide film

Al2O3

Aluminium oxide

ATP

Adenosine triphosphate

CMOS

Complementary metal-oxide-semiconductor

CNS

Central nervous system

DOS

Bis(2-ethylhexyl)sebacate

ESD

Electrostatic discharge

FEM

Finite element analysis

FET

Field-effect transistor

FG-MOS

Floating-gate MOS

GA

Glutaraldehyde

GERD

Gastroesophageal reflux disease

GI tract

Gastro intestinal tract

IrOx

Iridium oxide

ISE

Ion-selective electrode

ISFET

Ion-sensitive field-effect transistor

LPCVD

Low pressure chemical vapour deposition

L-PEI

Linear polyethylenimine polymer

LPF

Low-pass filter

L-PPI

Linear polypropyleneimine polymer

MMO

Metal-metal-oxide

MNOS

Metal-nitride-oxide-silicon

MOSFET

Metal oxide semiconductor field effect transistor

MWCNT

Multi-walled carbon nanotubes

NMOS

N-type metal-oxide-semiconductor

OCP

Open circuit potential

o-NPOE

2-nitrophenyloctyl ether

p(HEMA)

Poly(2-hydroxyethyl methacrylate)

PECVD

Low temperature chemical vapour deposition

PEDOT

Poly(3,4-ethylenedioxythiophene) polymer

PEG

Poly(ethylene glycol)

PMOS

P-type metal-oxide-semiconductor

PVC

Polyvinylchloride

RE

Reference electrode

ReFET

Reference FET

Si3N4

Silicon nitride

SIROF

Sputtered Ir(Ox) films

SNP

Single-nucleotide polymorphism

SsDNA

Single-Stranded Deoxyribonucleic acid

Ta2O5

Tantalum oxide

UV exposure

Ultraviolet exposure

WE

Working electrode

References

  1. 1.
    S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Lewenstam, Routines and challenges in clinical application of electrochemical ion-sensors. Electroanalysis 26(6), 1171–1181 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Ueshima, Magnesium and ischemic heart disease: a review of epidemiological, experimental, and clinical evidences. Magnes. Res. 18(4), 275–284 (2005)Google Scholar
  4. 4.
    S.P. Yu, L.M.T. Canzoniero, D.W. Choi, Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. 13(4), 405–411 (2001)CrossRefGoogle Scholar
  5. 5.
    S.P. Yu, Regulation and critical role of potassium homeostasis in apoptosis. Prog. Neurobiol. 70(4), 363–386 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Flores, D.R. DiBona, N. Frega, D.A. Leaf, Cell volume regulation and ischemic tissue damage. J. Membr. Biol. 10(1), 331–343 (1972)CrossRefGoogle Scholar
  7. 7.
    W.E. Cascio, G.X. Yan, A.G. Kléber, Early changes in extracellular potassium in ischemic rabbit myocardium. The role of extracellular carbon dioxide accumulation and diffusion. Circ. Res. 70(2), 409–422 (1992)CrossRefGoogle Scholar
  8. 8.
    A. Sola et al., Multiparametric monitoring of ischemia-reperfusion in rat kidney: effect of ischemic preconditioning. Transplantation 75(6), 744–749 (2003)CrossRefGoogle Scholar
  9. 9.
    O.T. Guenat, S. Generelli, N.F. de Rooij, M. Koudelka-Hep, F. Berthiaume, M.L. Yarmush, Development of an array of ion-selective microelectrodes aimed for the monitoring of extracellular ionic activities. Anal. Chem. 78(21), 7453–7460 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Rossol et al., Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 3, 1329 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Kun, B. Ristic, R.A. Peura, R.M. Dunn, Algorithm for tissue ischemia estimation based on electrical impedance spectroscopy. IEEE Trans. Biomed. Eng. 50(12), 1352–1359 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Wtorek, L. Jozefiak, A. Polinski, J. Siebert, An averaging two-electrode probe for monitoring changes in myocardial conductivity evoked by ischemia. IEEE Trans. Biomed. Eng. 49(3), 240–246 (2002)CrossRefGoogle Scholar
  13. 13.
    B. Ristic, S. Kun, R.A. Peura, Muscle tissue ischemia monitoring using impedance spectroscopy: quantitative results of animal studies, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 5 (1997), pp. 2108–2111, 5Google Scholar
  14. 14.
    S. Kun, R.A. Peura, Tissue ischemia detection using impedance spectroscopy, in Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers, vol. 2 (1994), pp. 868–869Google Scholar
  15. 15.
    C.A. González, C. Villanueva, S. Othman, R. Narváez, E. Sacristán, Impedance spectroscopy for monitoring ischemic injury in the intestinal mucosa. Physiol. Meas. 24(2), 277 (2003)CrossRefGoogle Scholar
  16. 16.
    H.-J. Chung et al., Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing Ischemia. Adv. Healthc. Mater. 3(1), 59–68 (2014)CrossRefGoogle Scholar
  17. 17.
    M.S. Frant, Historical perspective. History of the early commercialization of ion-selective electrodes. Analyst 119(11), 2293–2301 (1994)CrossRefGoogle Scholar
  18. 18.
    E. Bakker, R. Meruva, E. Pretsch, M. Meyerhoff, Selectivity of polymer membrane-based ion-selective electrodes: self-consistent model describing the potentiometric response in mixed ion solutions of different charge. Anal. Chem. 66(19), 3021–3030 (1994)CrossRefGoogle Scholar
  19. 19.
    D. O’Hare, K.H. Parker, C.P. Winlove, Metal–metal oxide pH sensors for physiological application. Med. Eng. Phys. 28(10), 982–988 (2006)CrossRefGoogle Scholar
  20. 20.
    C. Fay et al., Wireless ion-selective electrode autonomous sensing system. IEEE Sens. J. 11(10), 2374–2382 (2011)CrossRefGoogle Scholar
  21. 21.
    W.-D. Huang, S. Deb, Y.-S. Seo, S. Rao, M. Chiao, J.C. Chiao, A passive radio-frequency pH-sensing tag for wireless food-quality monitoring. IEEE Sens. J. 12(3), 487–495 (2012)CrossRefGoogle Scholar
  22. 22.
    W.-D. Huang, H. Cao, S. Deb, M. Chiao, J.C. Chiao, A flexible pH sensor based on the iridium oxide sensing film. Sens. Actuators Phys. 169(1), 1–11 (2011)CrossRefGoogle Scholar
  23. 23.
    CN–0326: isolated low power pH monitor with temperature compensation. Analog Devices, Inc., 2013Google Scholar
  24. 24.
    O. Korostynska, K. Arshak, E. Gill, A. Arshak, Review paper: materials and techniques for in vivo pH monitoring. IEEE Sens. J. 8(1), 20–28 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Cremer, Origin of electromotor properties of tissues, and instructional contribution for polyphasic electrolyte chains. Z. Für Biol. 47, 562–608 (1906)Google Scholar
  26. 26.
    J. Ruzicka, The seventies—golden age for ion selective electrodes. J. Chem. Educ. 74(2), 167 (1997)CrossRefGoogle Scholar
  27. 27.
    J. Janata, Potentiometric microsensors. Chem. Rev. 90(5), 691–703 (1990)CrossRefGoogle Scholar
  28. 28.
    P. Steegstra, E. Ahlberg, Influence of oxidation state on the pH dependence of hydrous iridium oxide films. Electrochim. Acta 76, 26–33 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Fog, R.P. Buck, Electronic semiconducting oxides as pH sensors. Sens. Actuators 5(2), 137–146 (1984)CrossRefGoogle Scholar
  30. 30.
    L.D. Burke, J.K. Mulcahy, D.P. Whelan, Preparation of an oxidized iridium electrode and the variation of its potential with pH. J. Electroanal. Chem. Interfacial Electrochem. 163(1), 117–128 (1984)CrossRefGoogle Scholar
  31. 31.
    K. Kinoshita, M.J. Madou, Electrochemical measurements on Pt, Ir, and Ti oxides as pH probes. J. Electrochem. Soc. 131(5), 1089–1094 (1984)CrossRefGoogle Scholar
  32. 32.
    E. Kinoshita, F. Ingman, G. Edwall, S. Thulin, S. Gła̧b, Polycrystalline and monocrystalline antimony, iridium and palladium as electrode material for pH-sensing electrodes. Talanta 33(2), 125–134 (1986)Google Scholar
  33. 33.
    M.L. Hitchman, S. Ramanathan, Evaluation of iridium oxide electrodes formed by potential cycling as pH probes. Analyst 113(1), 35–39 (1988)CrossRefGoogle Scholar
  34. 34.
    J. Bobacka, Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18(1), 7–18 (2006)CrossRefGoogle Scholar
  35. 35.
    J. Bobacka, A. Ivaska, A. Lewenstam, Potentiometric ion sensors. Chem. Rev. 108(2), 329–351 (2008)CrossRefGoogle Scholar
  36. 36.
    Z. Štefanac, W. Simon, Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem. J. 12(1), 125–132 (1967)CrossRefGoogle Scholar
  37. 37.
    Z. Stefanac, W. Simon, Highly selective cation electrode systems based on in-vitro behavior of macrotetrolides in membranes. Chimica 20 (1966)Google Scholar
  38. 38.
    L.A.R. Pioda, H.A. Wachter, R.E. Dohner, W. Simon, Complexes of nonactin and monactin with sodium, potassium and ammonium ions. Helv. Chim. Acta 50, 1373–1375 (1967)CrossRefGoogle Scholar
  39. 39.
    A.C. Ion, E. Bakker, E. Pretsch, Potentiometric Cd2+-selective electrode with a detection limit in the low ppt range. Anal. Chim. Acta 440(2), 71–79 (2001)CrossRefGoogle Scholar
  40. 40.
    A. Ceresa, E. Bakker, B. Hattendorf, D. Günther, E. Pretsch, Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: new requirements for selectivities and measuring protocols, and comparison with ICPMS. Anal. Chem. 73(2), 343–351 (2001)CrossRefGoogle Scholar
  41. 41.
    E. Bakker, M.E. Meyerhoff, Ionophore-based membrane electrodes: new analytical concepts and non-classical response mechanisms. Anal. Chim. Acta 416(2), 121–137 (2000)CrossRefGoogle Scholar
  42. 42.
    A. Shvarev, E. Bakker, Reversible electrochemical detection of nonelectroactive polyions. J. Am. Chem. Soc. 125(37), 11192–11193 (2003)CrossRefGoogle Scholar
  43. 43.
    M.E. Collison, G.V. Aebli, J. Petty, M.E. Meyerhoff, Potentiometric combination ion-carbon dioxide sensors for in vitro and in vivo blood measurements. Anal. Chem. 61(21), 2365–2372 (1989)CrossRefGoogle Scholar
  44. 44.
    D.L. Simpson, R.K. Kobos, Potentiometric microbiological assay of gentamicin, streptomycin, and neomycin with a carbon dioxide gas-sensing electrode. Anal. Chem. 55(12), 1974–1977 (1983)CrossRefGoogle Scholar
  45. 45.
    A.F. Bradley, Determination of blood-gases utilizing specially designed electrodes for PCO2, PO2, PO2 and pH. Biomed. Sci. Instrum. 3, 181–188 (1966)Google Scholar
  46. 46.
    R. Zahradník, P. Hobza, Z. Slanina, Calculations of Henry constants and partition coefficients using quantum chemical approach, in Quantitative Structure-Activity Relationships, ed. by M. Tichý (Birkhäuser Basel, 1976), p. 217–230Google Scholar
  47. 47.
    I.A. Pechenkina, K.N. Mikhelson, Materials for the ionophore-based membranes for ion-selective electrodes: problems and achievements (review paper). Russ. J. Electrochem. 51(2), 93–102 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Radu, Y. Qin, S. Peper, A. Ceresa, E. Bakker, Improving the low detection limit of polymer-based ion selective electrodes with a plasticizer-free polymer containing a covalently immobilized Ca2+-selective ionophore. Abstr. Pap. Am. Chem. Soc. 226, U105–U105 (2003)Google Scholar
  49. 49.
    L.Y. Heng, E.A.H. Hall, One-step synthesis of K+-selective methacrylic-acrylic copolymers containing grafted ionophore and requiring no plasticizer. Electroanalysis 12(3), 178–186 (2000)CrossRefGoogle Scholar
  50. 50.
    E. Malinowska, L. Gawart, P. Parzuchowski, G. Rokicki, Z. Brzózka, Novel approach of immobilization of calix[4]arene type ionophore in ‘self-plasticized’ polymeric membrane. Anal. Chim. Acta 421(1), 93–101 (2000)CrossRefGoogle Scholar
  51. 51.
    E. Bakker, P. Bühlmann, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97(8), 3083–3132 (1997)CrossRefGoogle Scholar
  52. 52.
    W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport (Elsevier, New York, 2012)Google Scholar
  53. 53.
    E. Bakker, M. Willer, M. Lerchi, K. Seiler, E. Pretsch, Determination of complex formation constants of neutral cation-selective ionophores in solvent polymeric membranes. Anal. Chem. 66(4), 516–521 (1994)CrossRefGoogle Scholar
  54. 54.
    P. Anker, E. Wieland, D. Ammann, R.E. Dohner, R. Asper, W. Simon, Neutral carrier based ion-selective electrode for the determination of total calcium in blood serum. Anal. Chem. 53(13), 1970–1974 (1981)CrossRefGoogle Scholar
  55. 55.
    D. Ammann et al., Preparation of neutral ionophores for Alkali and Alkaline earth metal cations and their application in ion selective membrane electrodes. Helv. Chim. Acta 58(6), 1535–1548 (1975)CrossRefGoogle Scholar
  56. 56.
    Y. Qin, E. Bakker, Evaluation of the separate equilibrium processes that dictate the upper detection limit of neutral ionophore-based potentiometric sensors. Anal. Chem. 74(13), 3134–3141 (2002)CrossRefGoogle Scholar
  57. 57.
    E. Lindner, K. Toth, E. Pungor, Lead-selective neutral carrier based liquid membrane electrode. Anal. Chem. 56(7), 1127–1131 (1984)CrossRefGoogle Scholar
  58. 58.
    E. Bakker, A. Xu, E. Pretsch, Optimum composition of neutral carrier based pH electrodes. Anal. Chim. Acta 295(3), 253–262 (1994)CrossRefGoogle Scholar
  59. 59.
    M. Telting-Diaz, E. Bakker, Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes. Anal. Chem. 73(22), 5582–5589 (2001)CrossRefGoogle Scholar
  60. 60.
    E. Lindner et al., Ion-selective membranes with low plasticizer content: electroanalytical characterization and biocompatibility studies. J. Biomed. Mater. Res. 28(5), 591–601 (1994)CrossRefGoogle Scholar
  61. 61.
    R. Lenigk, H. Zhu, T.-C. Lo, R. Renneberg, Recessed microelectrode array for a micro flow-through system allowing on-line multianalyte determination in vivo. Fresenius J. Anal. Chem. 364(1–2), 66–71 (1999)CrossRefGoogle Scholar
  62. 62.
    R.E. Gyurcsányi, N. Rangisetty, S. Clifton, B.D. Pendley, E. Lindner, Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts. Talanta 63(1), 89–99 (2004)CrossRefGoogle Scholar
  63. 63.
    S.Y. Yun et al., Potentiometric properties of ion-selective electrode membranes based on segmented polyether urethane matrices. Anal. Chem. 69(5), 868–873 (1997)CrossRefGoogle Scholar
  64. 64.
    D.N. Reinhoudt et al., Development of durable K+-selective chemically modified field effect transistors with functionalized polysiloxane membranes. Anal. Chem. 66(21), 3618–3623 (1994)CrossRefGoogle Scholar
  65. 65.
    G.J. Moody, B. Saad, J.D.R. Thomas, Glass transition temperatures of poly(vinyl chloride) and polyacrylate materials and calcium ion-selective electrode properties. Analyst 112(8), 1143–1147 (1987)CrossRefGoogle Scholar
  66. 66.
    L.Y. Heng, E.A.H. Hall, Methacrylic–acrylic polymers in ion-selective membranes: achieving the right polymer recipe. Anal. Chim. Acta 403(1–2), 77–89 (2000)CrossRefGoogle Scholar
  67. 67.
    E. Bakker, P. Bühlmann, E. Pretsch, Polymer membrane ion-selective electrodes-what are the limits? Electroanalysis 11(13), 915–933 (1999)CrossRefGoogle Scholar
  68. 68.
    S. Joo, R.B. Brown, Chemical sensors with integrated electronics. Chem. Rev. 108(2), 638–651 (2008)CrossRefGoogle Scholar
  69. 69.
    I.A. Ges, B.L. Ivanov, D.K. Schaffer, E.A. Lima, A.A. Werdich, F.J. Baudenbacher, Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron. 21(2), 248–256 (2005)CrossRefGoogle Scholar
  70. 70.
    W. Olthuis, M.A.M. Robben, P. Bergveld, M. Bos, W.E. van der Linden, pH sensor properties of electrochemically grown iridium oxide. Sens. Actuators B Chem. 2(4), 247–256 (1990)CrossRefGoogle Scholar
  71. 71.
    S. Yao, M. Wang, M. Madou, A pH electrode based on melt-oxidized iridium oxide. J. Electrochem. Soc. 148(4), H29–H36 (2001)CrossRefGoogle Scholar
  72. 72.
    J. Kieninger, A. Marx, F. Spies, A. Weltin, G.A. Urban, G. Jobst, pH micro sensor with micro-fluidic liquid-junction reference electrode on-chip for cell culture applications. IEEE Sens. 2009, 2009–2012Google Scholar
  73. 73.
    C.M. Nguyen et al., Sol-Gel iridium oxide-based pH sensor array on flexible polyimide substrate. IEEE Sens. J. 13(10), 3857–3864 (2013)CrossRefGoogle Scholar
  74. 74.
    M. Kubon et al., A microsensor system to probe physiological environments and tissue response. IEEE Sens. 2010, 2607–2611 (2010)Google Scholar
  75. 75.
    M.D. Johnson, O.E. Kao, D.R. Kipke, Spatiotemporal pH dynamics following insertion of neural microelectrode arrays. J. Neurosci. Methods 160(2), 276–287 (2007)CrossRefGoogle Scholar
  76. 76.
    X. Yue et al., A real-time multi-channel monitoring system for stem cell culture process. IEEE Trans. Biomed. Circuits Syst. 2(2), 66–77 (2008)CrossRefGoogle Scholar
  77. 77.
    S.A.M. Marzouk, S. Ufer, R.P. Buck, T.A. Johnson, L.A. Dunlap, W.E. Cascio, Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Anal. Chem. 70(23), 5054–5061 (1998)CrossRefGoogle Scholar
  78. 78.
    P.J. Kinlen, J.E. Heider, D.E. Hubbard, A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators B Chem. 22(1), 13–25 (1994)CrossRefGoogle Scholar
  79. 79.
    E. Lindner et al., In vivo and in vitro testing of microelectronically fabricated planar sensors designed for applications in cardiology. Fresenius J. Anal. Chem. 346(6–9), 584–588 (1993)CrossRefGoogle Scholar
  80. 80.
    V.V. Cosofret, E. Lindner, T.A. Johnson, M.R. Neuman, Planar micro sensors for in vivo myocardial pH measurements. Talanta 41(6), 931–938 (1994)CrossRefGoogle Scholar
  81. 81.
    V.V. Cosofret, M. Erdosy, T.A. Johnson, R.P. Buck, R.B. Ash, M.R. Neuman, Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart. Anal. Chem. 67(10), 1647–1653 (1995)CrossRefGoogle Scholar
  82. 82.
    S.A.M. Marzouk, R.P. Buck, L.A. Dunlap, T.A. Johnson, W.E. Cascio, Measurement of extracellular pH, K+, and lactate in ischemic heart. Anal. Biochem. 308(1), 52–60 (2002)CrossRefGoogle Scholar
  83. 83.
    S. Anastasova-Ivanova et al., Development of miniature all-solid-state potentiometric sensing system. Sens. Actuators B Chem. 146(1), 199–205 (2010)CrossRefGoogle Scholar
  84. 84.
    G. Urban et al., Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications. Biosens. Bioelectron. 7(10), 733–739 (1992)CrossRefGoogle Scholar
  85. 85.
    H. Cao et al., An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring. IEEE Trans. Biomed. Eng. 59(11), 3131–3139 (2012)CrossRefGoogle Scholar
  86. 86.
    E. Bitziou, D. O’Hare, B.A. Patel, Spatial changes in acid secretion from isolated stomach tissue using a pH-histamine sensing microarray. Analyst 135(3), 482–487 (2010)CrossRefGoogle Scholar
  87. 87.
    E. Bitziou, D. O’Hare, B.A. Patel, Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach. Anal. Chem. 80(22), 8733–8740 (2008)CrossRefGoogle Scholar
  88. 88.
    I.A. Ges, B.L. Ivanov, A.A. Werdich, F.J. Baudenbacher, Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes. Biosens. Bioelectron. 22(7), 1303–1310 (2007)CrossRefGoogle Scholar
  89. 89.
    I.A. Ges, I.A. Dzhura, F.J. Baudenbacher, On-chip acidification rate measurements from single cardiac cells confined in sub-nanoliter volumes. Biomed. Microdevices 10(3), 347–354 (2008)CrossRefGoogle Scholar
  90. 90.
    M. Mir, R. Lugo, I.B. Tahirbegi, J. Samitier, Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications. Sensors 14(7), 11844–11854 (2014)CrossRefGoogle Scholar
  91. 91.
    W. Qin, T. Zwickl, E. Pretsch, Improved detection limits and unbiased selectivity coefficients obtained by using ion-exchange resins in the inner reference solution of ion-selective polymeric membrane electrodes. Anal. Chem. 72(14), 3236–3240 (2000)Google Scholar
  92. 92.
    E.J. Parra, P. Blondeau, G.A. Crespo, F.X. Rius, An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. Chem. Commun. 47(8), 2438–2440 (2011)CrossRefGoogle Scholar
  93. 93.
    M.A. Simon, R.P. Kusy, Plasticizer-level study of poly(vinyl chloride) ion-selective membranes. J. Biomed. Mater. Res. 30(3), 313–320 (1996)CrossRefGoogle Scholar
  94. 94.
    V.G. Gavalas, M.J. Berrocal, L.G. Bachas, Enhancing the blood compatibility of ion-selective electrodes. Anal. Bioanal. Chem. 384(1), 65–72 (2005)CrossRefGoogle Scholar
  95. 95.
    M. Pawlak, E. Bakker, Chemical modification of polymer ion-selective membrane electrode surfaces. Electroanalysis 26(6), 1121–1131 (2014)CrossRefGoogle Scholar
  96. 96.
    S. Yajima, Y. Sonoyama, K. Suzuki, K. Kimura, Ion-sensor property and blood compatibility of neutral-carrier-type poly(vinyl chloride) membranes coated by phosphorylcholine polymers. Anal. Chim. Acta 463(1), 31–37 (2002)CrossRefGoogle Scholar
  97. 97.
    M.J. Berrocal, R.D. Johnson, I.H.A. Badr, M. Liu, D. Gao, L.G. Bachas, Improving the blood compatibility of ion-selective electrodes by employing poly(MPC-co-BMA), a copolymer containing phosphorylcholine, as a membrane coating. Anal. Chem. 74(15), 3644–3648 (2002)CrossRefGoogle Scholar
  98. 98.
    J.A. Hayward, D. Chapman, Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials 5(3), 135–142 (1984)CrossRefGoogle Scholar
  99. 99.
    A. Ivorra et al., Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 19(4), 391–399 (2003)MathSciNetCrossRefGoogle Scholar
  100. 100.
    G.P. Gumbrell, R.A. Peura, S. Kun, R.M. Dunn, Development of a pH based tissue ischemia monitor: hardware realization, in Proceedings of the 1996 IEEE Twenty-Second Annual Northeast Bioengineering Conference, 54–55 (1996)Google Scholar
  101. 101.
    G.P. Gumbrell, R.A. Peura, S. Kun, R.M. Dunn, Development of a minimally invasive microvascular ischemia monitor: drift reduction results, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, 25–27 (1997)Google Scholar
  102. 102.
    G.P. Gumbrell, R.A. Peura, S. Kun, R.M. Dunn, Development of a pH based tissue ischemia monitor: preliminary clinical results, in Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine, vol. 1, 40–41 (1996)Google Scholar
  103. 103.
    A.H. Auerbach, B.R. Soller, R.A. Peura, Sources of error in measuring tissue pH with microsensors, in Proceedings of the 20th Annual Northeast Bioengineering Conference, 108–109 (1994)Google Scholar
  104. 104.
    J. Songer, Tissue ischemia monitoring using impedance spectroscopy. MSc. Thesis, Worcester Polytechnic Institute, 2001Google Scholar
  105. 105.
    A. Senagore, D.J.W. Milsom, R.K. Walshaw, R. Dunstan, W.P. Mazier, I.H. Chaudry, Intramural pH: a quantitative measurement for predicting colorectal anastomotic healing. Dis. Colon Rectum 33(3), 175–179 (1990)CrossRefGoogle Scholar
  106. 106.
    S.G. Nugent, D. Kumar, D.S. Rampton, D.F. Evans, Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48(4), 571–577 (2001)CrossRefGoogle Scholar
  107. 107.
    D.C.J. McDougall, R. Wong, P. Scudera, M. Lesser, J.J. DeCosse, Colonic mucosal pH in humans. Dig. Dis. Sci. 38(3), 542–545 (1993)CrossRefGoogle Scholar
  108. 108.
    M. Millan, E. García-Granero, B. Flor, S. García-Botello, S. Lledo, Early prediction of anastomotic leak in colorectal cancer surgery by intramucosal pH. Dis. Colon Rectum 49(5), 595–601 (2006)CrossRefGoogle Scholar
  109. 109.
    C.A. Eckley, H.O. Costa, Comparative study of salivary pH and volume in adults with chronic laryngopharyngitis by gastroesophageal reflux disease before and after treatment. Rev. Bras. Otorrinolaringol. 72(1), 55–60 (2006)CrossRefGoogle Scholar
  110. 110.
    S. Ghimenti et al., Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy. PLoS ONE 6(12), e28182 (2011)CrossRefGoogle Scholar
  111. 111.
    J.L. Gonzalez-Guillaumin, D.C. Sadowski, K.V.I.S. Kaler, M.P. Mintchev, Ingestible capsule for impedance and pH monitoring in the esophagus. IEEE Trans. Biomed. Eng. 54(12), 2231–2236 (2007)CrossRefGoogle Scholar
  112. 112.
    G.X. Yan, K.A. Yamada, A.G. Kléber, J. McHowat, P.B. Corr, Dissociation between cellular K+ loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia. Circ. Res. 72(3), 560–570 (1993)CrossRefGoogle Scholar
  113. 113.
    J.N. Weiss, S.T. Lamp, K.I. Shine, Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition. Am. J. Physiol. Heart Circ. Physiol. 256(4), H1165–H1175 (1989)Google Scholar
  114. 114.
    B.F. Palmer, Regulation of potassium homeostasis. Clin. J. Am. Soc. Nephrol. 10(6), 1050–1060 (2015)CrossRefGoogle Scholar
  115. 115.
    A.G. Kléber, C.B. Riegger, M.J. Janse, Extracellular K+ and H+ shifts in early ischemia: mechanisms and relation to changes in impulse propagation. J. Mol. Cell. Cardiol. 19(Suppl 5), 35–44 (1987)CrossRefGoogle Scholar
  116. 116.
    I.A. Marques de Oliveira et al., Sodium ion sensitive microelectrode based on a p-tert-butylcalix[4]arene ethyl ester. Sens. Actuators B Chem. 130(1), 295–299 (2008)Google Scholar
  117. 117.
    S. Chandra, H. Lang, A new sodium ion selective electrode based on a novel silacrown ether. Sens. Actuators B Chem. 114(2), 849–854 (2006)CrossRefGoogle Scholar
  118. 118.
    K.Y. Chumbimuni-Torres, N. Rubinova, A. Radu, L.T. Kubota, E. Bakker, Solid contact potentiometric sensors for trace level measurements. Anal. Chem. 78(4), 1318–1322 (2006)CrossRefGoogle Scholar
  119. 119.
    F. Li et al., All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst 137(3), 618–623 (2012)CrossRefGoogle Scholar
  120. 120.
    N. Zine et al., Potassium-ion selective solid contact microelectrode based on a novel 1,3-(di-4-oxabutanol)-calix[4]arene-crown–5 neutral carrier. Electrochim. Acta 51(24), 5075–5079 (2006)CrossRefGoogle Scholar
  121. 121.
    J.E. Pandolfino, J.E. Richter, T. Ours, J.M. Guardino, J. Chapman, P.J. Kahrilas, Ambulatory esophageal pH monitoring using a wireless system. Am. J. Gastroenterol. 98(4), 740–749 (2003)CrossRefGoogle Scholar
  122. 122.
    G. Karamanolis et al., Bravo 48-hour wireless pH monitoring in patients with non-cardiac chest pain. Objective gastroesophageal reflux disease parameters predict the responses to proton pump inhibitors. J. Neurogastroenterol. Motil. 18(2), 169–173 (2012)CrossRefGoogle Scholar
  123. 123.
    E. Lindner, R. Buck, Microfabricated potentiometric electrodes and their in vivo applications. Anal. Chem. 72(9), 336 A–345 A (2000)Google Scholar
  124. 124.
    I.B. Tahirbegi, M. Mir, S. Schostek, M. Schurr, J. Samitier, In vivo ischemia monitoring array for endoscopic surgery. Biosens. Bioelectron. 61, 124–130 (2014)Google Scholar
  125. 125.
    A. Errachid, A. Ivorra, J. Aguiló, R. Villa, N. Zine, J. Bausells, New technology for multi-sensor silicon needles for biomedical applications. Sens. Actuators B Chem. 78(1–3), 279–284 (2001)CrossRefGoogle Scholar
  126. 126.
    R. Gómez et al., A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices 8(1), 43–49 (2006)CrossRefGoogle Scholar
  127. 127.
    M. Genescà et al., Electrical bioimpedance measurement during hypothermic rat kidney preservation for assessing ischemic injury. Biosens. Bioelectron. 20(9), 1866–1871 (2005)CrossRefGoogle Scholar
  128. 128.
    M. Tijero et al., SU–8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 2410–2416 (2009)CrossRefGoogle Scholar
  129. 129.
    L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014)Google Scholar
  130. 130.
    I.B. Tahirbegi, M. Mir, J. Samitier, Real-time monitoring of ischemia inside stomach. Biosens. Bioelectron. 40(1), 323–328 (2013)CrossRefGoogle Scholar
  131. 131.
    P. Bergveld, Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88(1), 1–20 (2003)CrossRefGoogle Scholar
  132. 132.
    P.A. Hammond, D. Ali, D.R.S. Cumming, Design of a single-chip pH sensor using a conventional 0.6 μm CMOS process. IEEE Sens. J. 4(6), 706–712 (2004)CrossRefGoogle Scholar
  133. 133.
    P. Georgiou, C. Toumazou, ISFET characteristics in CMOS and their application to weak inversion operation. Sens. Actuators B Chem. 143(1), 211–217 (2009)CrossRefGoogle Scholar
  134. 134.
    D. Binkley, Tradeoffs and optimization in analog CMOS design (Wiley, Chichester, West Sussex, UK, 2008)CrossRefGoogle Scholar
  135. 135.
    A. Al-Ahdal, C. Toumazou, ISFET-based chemical switch. IEEE Sens. J. 12(5), 1140–1146 (2012)CrossRefGoogle Scholar
  136. 136.
    L.M. Shepherd, C. Toumazou, A biochemical translinear principle with weak inversion ISFETs. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2614–2619 (2005)CrossRefGoogle Scholar
  137. 137.
    Y. Liu, P. Georgiou, T. Prodromakis, T.G. Constandinou, C. Toumazou, An extended CMOS ISFET model incorporating the physical design geometry and the effects on performance and offset variation. IEEE Trans. Electron Devices 58(12), 4414–4422 (2011)CrossRefGoogle Scholar
  138. 138.
    N. Miscourides, P. Georgiou, Impact of technology scaling on ISFET performance for genetic sequencing. IEEE Sens. J. 15(4), 2219–2226 (2015)CrossRefGoogle Scholar
  139. 139.
    M. Sohbati, Y. Liu, P. Georgiou, C. Toumazou, An ISFET design methodology incorporating CMOS passivation, IEEE Biomedical Circuits and Systems Conference (BioCAS), 65–68 (2012)Google Scholar
  140. 140.
    M. Sohbati, C. Toumazou, Dimension and shape effects on the ISFET performance. IEEE Sens. J. 15(3), 1670–1679 (2015)CrossRefGoogle Scholar
  141. 141.
    J. Bausells, J. Carrabina, A. Errachid, A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sens. Actuators B Chem. 57(1–3), 56–62 (1999)CrossRefGoogle Scholar
  142. 142.
    M.J. Milgrew, D.R.S. Cumming, Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge. IEEE Trans. Electron Devices 55(4), 1074–1079 (2008)CrossRefGoogle Scholar
  143. 143.
    M.J. Milgrew, M.O. Riehle, D.R.S. Cumming, A large transistor-based sensor array chip for direct extracellular imaging. Sens. Actuators B Chem. 111–112, 347–353 (2005)CrossRefGoogle Scholar
  144. 144.
    T. Prodromakis, Y. Liu, T. Constandinou, P. Georgiou, C. Toumazou, Exploiting CMOS technology to enhance the performance of ISFET sensors. IEEE Electron Device Lett. 31(9), 1053–1055 (2010)CrossRefGoogle Scholar
  145. 145.
    J.M. Rothberg, W. Hinz, K.L. Johnson, J. Bustillo, Methods and apparatus for measuring analytes using large scale fet arrays. CA2672315 A1, 26 Jun 2008Google Scholar
  146. 146.
    M. Milgrew, J. Bustillo, T. Rearick, Chemically-sensitive field effect transistor based pixel array with protection diodes. US20130001653 A1, 03 Jan 2013Google Scholar
  147. 147.
    H.-S. Wong, M.H. White, A CMOS-integrated `ISFET-operational amplifier’ chemical sensor employing differential sensing. IEEE Trans. Electron Devices 36(3), 479–487 (1989)CrossRefGoogle Scholar
  148. 148.
    V.P. Chodavarapu, A.H. Titus, A.N. Cartwright, Differential read-out architecture for CMOS ISFET microsystems. Electron. Lett. 41(12), 698–699 (2005)CrossRefGoogle Scholar
  149. 149.
    D. Garner, H. Bai, Electrostatic discharge protection. US20130188288 A1, 25 July 2013Google Scholar
  150. 150.
    R. Smith, R.J. Huber, J. Janata, Electrostatically protected ion sensitive field effect transistors. Sens. Actuators 5(2), 127–136 (1984)CrossRefGoogle Scholar
  151. 151.
    Y. Hu, P. Georgiou, A robust ISFET pH-measuring front-end for chemical reaction monitoring. IEEE Trans. Biomed. Circuits Syst. 8(2), 177–185 (2014)CrossRefGoogle Scholar
  152. 152.
    P. Georgiou, C. Toumazou, CMOS-based programmable gate ISFET. Electron. Lett. 44(22), 1289–1290 (2008)CrossRefGoogle Scholar
  153. 153.
    A. Al-Ahdal, P. Georgiou, C. Toumazou, ISFET’s threshold voltage control using bidirectional electron tunnelling, in 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), 172–175 (2012)Google Scholar
  154. 154.
    P. Georgiou, C. Toumazou, ISFET threshold voltage programming in CMOS using hot-electron injection. Electron. Lett. 45(22), 1112–1113 (2009)CrossRefGoogle Scholar
  155. 155.
    A.G. Al-Ahdal, C. Toumazou, ISFET threshold voltage programming in CMOS using electron tunnelling. Electron. Lett. 47(25), 1398–1399 (2011)CrossRefGoogle Scholar
  156. 156.
    J.M. Rothberg et al., An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356), 348–352 (2011)CrossRefGoogle Scholar
  157. 157.
    C. Toumazou et al., Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10(7), 641–646 (2013)CrossRefGoogle Scholar
  158. 158.
    X. Huang, H. Yu, X. Liu, Y. Jiang, M. Yan, D. Wu, A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Trans. Biomed. Eng. 62(9), 2224–2233 (2015)CrossRefGoogle Scholar
  159. 159.
    P. Rai, S. Jung, T. Ji, V.K. Varadan, Drain current centric modality: instrumentation and evaluation of ISFET for monitoring myocardial ischemia like variations in pH and potassium ion concentration. IEEE Sens. J. 9(12), 1987–1995 (2009)CrossRefGoogle Scholar
  160. 160.
    F. Xu, G. Yan, Z. Wang, P. Jiang, Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule. Measurement 64, 49–56 (2015)Google Scholar
  161. 161.
    P.A. Hammond, D. Ali, D.R.S. Cumming, A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Trans. Biomed. Eng. 52(4), 687–694 (2005)CrossRefGoogle Scholar
  162. 162.
    C.-S. Lee, S.K. Kim, M. Kim, Ion-sensitive field-effect transistor for biological sensing. Sensors 9(9), 7111–7131 (2009)CrossRefGoogle Scholar
  163. 163.
    S. Migita, K. Ozasa, T. Tanaka, T. Haruyama, Enzyme-based field-effect transistor for adenosine triphosphate (ATP) sensing. Anal. Sci. 23(1), 45–48 (2007)CrossRefGoogle Scholar
  164. 164.
    A. Bratov, N. Abramova, A. Ipatov, Recent trends in potentiometric sensor arrays—a review. Anal. Chim. Acta 678(2), 149–159 (2010)CrossRefGoogle Scholar
  165. 165.
    J. Janata, Principles of Chemical Sensors (Springer Science & Business Media, 2010)Google Scholar
  166. 166.
    T.-W. Huang, J.-C. Chou, T.-P. Sun, S.-K. Hsiung, Fabrication of a screen-printing reference electrode for potentiometric measurement. Sens. Lett. 6(6), 860–863 (2008)CrossRefGoogle Scholar
  167. 167.
    W. Vonau, W. Oelßner, U. Guth, J. Henze, An all-solid-state reference electrode. Sens. Actuators B Chem. 144(2), 368–373 (2010)CrossRefGoogle Scholar
  168. 168.
    J. Sutter, E. Lindner, R.E. Gyurcsányi, E. Pretsch, A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit. Anal. Bioanal. Chem. 380(1), 7–14 (2004)CrossRefGoogle Scholar
  169. 169.
    A. Cadogan, Z. Gao, A. Lewenstam, A. Ivaska, D. Diamond, All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Anal. Chem. 64(21), 2496–2501 (1992)CrossRefGoogle Scholar
  170. 170.
    G.D. O’Neil, R. Buiculescu, S.P. Kounaves, N.A. Chaniotakis, Carbon-nanofiber-based nanocomposite membrane as a highly stable solid-state junction for reference electrodes. Anal. Chem. 83(14), 5749–5753 (2011)CrossRefGoogle Scholar
  171. 171.
    H.J. Yoon et al., Solid-state ion sensors with a liquid junction-free polymer membrane-based reference electrode for blood analysis. Sens. Actuators B Chem. 64(1–3), 8–14 (2000)CrossRefGoogle Scholar
  172. 172.
    G. Valdés-Ramírez, G.A. Álvarez-Romero, C.A. Galán-Vidal, P.R. Hernández-Rodríguez, M.T. Ramírez-Silva, Composites: a novel alternative to construct solid state Ag/AgCl reference electrodes. Sens. Actuators B Chem. 110(2), 264–270 (2005)CrossRefGoogle Scholar
  173. 173.
    D. Rehm, E. McEnroe, D. Diamond, An all solid-state reference electrode based on a potassium chloride doped vinyl ester resin. Anal. Proc. Anal. Commun. 32(8), 319–322 (1995)CrossRefGoogle Scholar
  174. 174.
    R. Mamińska, A. Dybko, W. Wróblewski, All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sens. Actuators B Chem. 115(1), 552–557 (2006)CrossRefGoogle Scholar
  175. 175.
    D. Cicmil et al., Ionic liquid-based, liquid-junction-free reference electrode. Electroanalysis 23(8), 1881–1890 (2011)CrossRefGoogle Scholar
  176. 176.
    Ł. Tymecki, E. Zwierkowska, R. Koncki, Screen-printed reference electrodes for potentiometric measurements. Anal. Chim. Acta 526(1), 3–11 (2004)CrossRefGoogle Scholar
  177. 177.
    A. Kisiel, A. Michalska, K. Maksymiuk, E.A.H. Hall, All-solid-state reference electrodes with poly(n-butyl acrylate) based membranes. Electroanalysis 20(3), 318–323 (2008)CrossRefGoogle Scholar
  178. 178.
    A. Kisiel, M. Donten, J. Mieczkowski, F.X. Rius-Ruiz, K. Maksymiuk, A. Michalska, Polyacrylate microspheres composite for all-solid-state reference electrodes. Analyst 135(9), 2420–2425 (2010)CrossRefGoogle Scholar
  179. 179.
    G.A. Crespo, S. Macho, F.X. Rius, Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal. Chem. 80(4), 1316–1322 (2008)CrossRefGoogle Scholar
  180. 180.
    G.A. Crespo, S. Macho, J. Bobacka, F.X. Rius, Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Anal. Chem. 81(2), 676–681 (2009)CrossRefGoogle Scholar
  181. 181.
    F.X. Rius-Ruiz, D. Bejarano-Nosas, P. Blondeau, J. Riu, F.X. Rius, Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane. Anal. Chem. 83(14), 5783–5788 (2011)CrossRefGoogle Scholar
  182. 182.
    F.X. Rius-Ruiz, A. Kisiel, A. Michalska, K. Maksymiuk, J. Riu, F.X. Rius, Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Anal. Bioanal. Chem. 399(10), 3613–3622 (2011)CrossRefGoogle Scholar
  183. 183.
    Z. Mousavi, K. Granholm, T. Sokalski, A. Lewenstam, An analytical quality solid-state composite reference electrode. The Analyst 138(18), 5216–5220 (2013)CrossRefGoogle Scholar
  184. 184.
    T. Guinovart, G.A. Crespo, F.X. Rius, F.J. Andrade, A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chim. Acta 821, 72–80 (2014)CrossRefGoogle Scholar
  185. 185.
    A.K. Ghosh, V. Ramachandhran, M.S. Hanra, B.M. Misra, Studies on fouling and gel polarisation aspects of polyvinyl butyral blended cellulose acetate ultrafiltration membrane by resistance model approach. Indian J. Chem. Technol. 7(2), 55–60 (2000)Google Scholar
  186. 186.
    Y. Saito, M. Okano, K. Kubota, T. Sakai, J. Fujioka, T. Kawakami, Evaluation of interactive effects on the ionic conduction properties of polymer gel electrolytes. J. Phys. Chem. B 116(33), 10089–10097 (2012)CrossRefGoogle Scholar
  187. 187.
    E. Bakker, Hydrophobic membranes as liquid junction-free reference electrodes. Electroanalysis 11(10–11), 788–792 (1999)CrossRefGoogle Scholar
  188. 188.
    T. Kakiuchi, T. Yoshimatsu, N. Nishi, New class of Ag/AgCl electrodes based on hydrophobic ionic liquid saturated with AgCl. Anal. Chem. 79(18), 7187–7191 (2007)CrossRefGoogle Scholar
  189. 189.
    C. Zuliani, G. Matzeu, D. Diamond, A liquid-junction-free reference electrode based on a PEDOT solid-contact and ionogel capping membrane. Talanta 125, 58–64 (2014)CrossRefGoogle Scholar
  190. 190.
    M. Shibata, H. Sakaida, T. Kakiuchi, Determination of the activity of hydrogen ions in dilute sulfuric acids by use of an ionic liquid salt bridge sandwiched by two hydrogen electrodes. Anal. Chem. 83(1), 164–168 (2011)CrossRefGoogle Scholar
  191. 191.
    U. Guth, F. Gerlach, M. Decker, W. Oelßner, W. Vonau, Solid-state reference electrodes for potentiometric sensors. J. Solid State Electrochem. 13(1), 27–39 (2008)CrossRefGoogle Scholar
  192. 192.
    B. Palán, F.V. Santos, J.M. Karam, B. Courtois, M. Husák, New ISFET sensor interface circuit for biomedical applications. Sens. Actuators B Chem. 57(1–3), 63–68 (1999)CrossRefGoogle Scholar
  193. 193.
    M.F. Chaplin, C. Bucke, Enzyme Technology (CUP Archive, 1990)Google Scholar
  194. 194.
    G.N. Meloni, Building a microcontroller based potentiostat: a inexpensive and versatile platform for teaching electrochemistry and instrumentation. J. Chem. Educ. 93(7), 1320–1322 (2016)CrossRefGoogle Scholar
  195. 195.
    M.D.M. Dryden, A.R. Wheeler, DStat: a versatile, open-source potentiostat for electroanalysis and integration. PLoS ONE 10(10), e0140349 (2015)CrossRefGoogle Scholar
  196. 196.
    R.S. Freire, C.A. Pessoa, L.D. Mello, L.T. Kubota, Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J. Braz. Chem. Soc. 14(2), 230–243 (2003)CrossRefGoogle Scholar
  197. 197.
    B.P. Schaffar, Thick film biosensors for metabolites in undiluted whole blood and plasma samples. Anal. Bioanal. Chem. 372(2), 254–260 (2002)CrossRefGoogle Scholar
  198. 198.
    Z. Chen, C. Fang, H. Wang, J. He, Disposable glucose test strip for whole blood with integrated sensing/diffusion-limiting layer. Electrochim. Acta 55(2), 544–550 (2009)CrossRefGoogle Scholar
  199. 199.
    R.A. Croce, S. Vaddiraju, F. Papadimitrakopoulos, F.C. Jain, Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes. Sensors 12(10), 13402–13416 (2012)CrossRefGoogle Scholar
  200. 200.
    F. Valentini, L. Galache Fernàndez, E. Tamburri, G. Palleschi, Single Walled Carbon Nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: Study of the extended linearity. Biosens. Bioelectron. 43, 75–78 (2013)CrossRefGoogle Scholar
  201. 201.
    A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108(7), 2482–2505 (2008)CrossRefGoogle Scholar
  202. 202.
    Z. Zhou, L. Xu, S. Wu, B. Su, A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst 139(19), 4934–4939 (2014)CrossRefGoogle Scholar
  203. 203.
    Y. Liu, Y. Dong, C.X. Guo, Z. Cui, L. Zheng, C.M. Li, Protein-directed in situ synthesis of gold nanoparticles on reduced graphene oxide modified electrode for nonenzymatic glucose sensing. Electroanalysis 24(12), 2348–2353 (2012)CrossRefGoogle Scholar
  204. 204.
    Y. Fu et al., One-pot preparation of polymer–enzyme–metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv. Funct. Mater. 19(11), 1784–1791 (2009)CrossRefGoogle Scholar
  205. 205.
    D. Xu, L. Luo, Y. Ding, P. Xu, Sensitive electrochemical detection of glucose based on electrospun La0.88Sr0.12MnO3 nanofibers modified electrode. Anal. Biochem. 489, 38–43 (2015)CrossRefGoogle Scholar
  206. 206.
    N.G. Poulos, J.R. Hall, M.C. Leopold, functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors. Langmuir 31(4), 1547–1555 (2015)CrossRefGoogle Scholar
  207. 207.
    M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)CrossRefGoogle Scholar
  208. 208.
    Medtronic MiniMed 530G. [Online]. Available: http://www.medtronicdiabetes.com/products/minimed–530g-diabetes-system-with-enlite. Accessed: 28 Jan 2016
  209. 209.
    Dexcom G5TM Mobile Continuous Glucose Monitoring (CGM) System. [Online]. Available: http://www.dexcom.com/g5-mobile-cgm. Accessed: 28 Jan 2016
  210. 210.
    FreeStyle Libre| FreeStyle Blood Glucose Meters. [Online]. Available: https://abbottdiabetescare.co.uk/our-products/freestyle-libre. Accessed: 26 Jan 2016
  211. 211.
    D. De Backer, J. Creteur, H. Zhang, M. Norrenberg, J.-L. Vincent, Lactate production by the lungs in acute lung injury. Am. J. Respir. Crit. Care Med. 156(4), 1099–1104 (1997)CrossRefGoogle Scholar
  212. 212.
    J.A. Kruse, S.A.J. Zaidi, R.W. Carlson, Significance of blood lactate levels in critically III patients with liver disease. Am. J. Med. 83(1), 77–82 (1987)CrossRefGoogle Scholar
  213. 213.
    S. Mm, M. Pn, Adenine nucleotide and lactate metabolism in the lung in endotoxin shock. Circ. Shock 8(6), 657–666 (1980)Google Scholar
  214. 214.
    J. Karlsson, J.T. Willerson, S.J. Leshin, C.B. Mullins, J.H. Mitchell, Skeletal muscle metabolites in patients with cardiogenic shock or severe congestive heart failure. Scand. J. Clin. Lab. Invest. 35(1), 73–79 (1975)CrossRefGoogle Scholar
  215. 215.
    R. Rimachi, F. Bruzzi de Carvahlo, C. Orellano-Jimenez, F. Cotton, J.L. Vincent, D. De Backer, Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth. Intensive Care 40(3), 427–432 (2012)Google Scholar
  216. 216.
    B. Carbonne, K. Pons, E. Maisonneuve, Foetal scalp blood sampling during labour for pH and lactate measurements. Best Pract. Res. Clin. Obstet. Gynaecol. 30, 62–67 (2016)Google Scholar
  217. 217.
    R.K.D. Suveera Dhup, Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr. Pharm. Des. 18(10), 1319–1330 (2012)Google Scholar
  218. 218.
    K.M. Kennedy, M.W. Dewhirst, Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6(1), 127–148 (2009)CrossRefGoogle Scholar
  219. 219.
    R.M.A. Bhatia et al., Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery. Neurosurgery 58(4) (2006)Google Scholar
  220. 220.
    J.C. Goodman, A.B. Valadka, S.P. Gopinath, M. Uzura, C.S.M. Robertson, Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. [Miscellaneous Article]. Crit. Care Med. 27(9), 1965–1973 (1999)CrossRefGoogle Scholar
  221. 221.
    E.L. Cureton, R.O. Kwan, K.C. Dozier, J. Sadjadi, J.D. Pal, G.P. Victorino, A different view of lactate in trauma patients: protecting the injured brain. J. Surg. Res. 159(1), 468–473 (2010)CrossRefGoogle Scholar
  222. 222.
    E. Naylor et al., Lactate as a biomarker for sleep. Sleep 35(9), 1209–1222 (2012)Google Scholar
  223. 223.
    L. Rassaei, W. Olthuis, S. Tsujimura, E.J.R. Sudhölter, A. van den Berg, Lactate biosensors: current status and outlook. Anal. Bioanal. Chem. 406(1), 123–137 (2013)CrossRefGoogle Scholar
  224. 224.
    G.F. Manbeck, E. Fujita, A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J. Porphyr. Phthalocyanines 19(01–03), 45–64 (2015)CrossRefGoogle Scholar
  225. 225.
    M.R. Romero, F. Ahumada, F. Garay, A.M. Baruzzi, Amperometric biosensor for direct blood lactate detection. Anal. Chem. 82(13), 5568–5572 (2010)CrossRefGoogle Scholar
  226. 226.
    S.A. Bhakta, E. Evans, T.E. Benavidez, C.D. Garcia, Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal. Chim. Acta 872, 7–25 (2015)CrossRefGoogle Scholar
  227. 227.
    M. Gamero, F. Pariente, E. Lorenzo, C. Alonso, Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens. Bioelectron. 25(9), 2038–2044 (2010)CrossRefGoogle Scholar
  228. 228.
    X.-R. He et al., Amperometric L-lactate biosensor based on sol-gel film and multi-walled carbon nanotubes/platinum nanoparticles enhancement. Chin. J. Anal. Chem. Chin. Version 38(1), 57–61 (2010)Google Scholar
  229. 229.
    Y. Yu, Y. Yang, H. Gu, T. Zhou, G. Shi, Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens. Bioelectron. 41, 511–518 (2013)CrossRefGoogle Scholar
  230. 230.
    J.M. Goran, J.L. Lyon, K.J. Stevenson, Amperometric detection of l-Lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal. Chem. 83(21), 8123–8129 (2011)CrossRefGoogle Scholar
  231. 231.
    L. Agüí, M. Eguílaz, C. Peña-Farfal, P. Yáñez-Sedeño, J.M. Pingarrón, Lactate dehydrogenase biosensor based on an hybrid carbon nanotube-conducting polymer modified electrode. Electroanalysis 21(3–5), 386–391 (2009)CrossRefGoogle Scholar
  232. 232.
    I. Shakir, M. Shahid, H.W. Yang, S. Cherevko, C.-H. Chung, D.J. Kang, α-MoO3 nanowire-based amperometric biosensor for l-lactate detection. J. Solid State Electrochem. 16(6), 2197–2201 (2012)CrossRefGoogle Scholar
  233. 233.
    A.C. Pereira, A. Kisner, C.R.T. Tarley, L.T. Kubota, Development of a carbon paste electrode for lactate detection based on Meldola’s blue adsorbed on silica gel modified with niobium oxide and lactate oxidase. Electroanalysis 23(6), 1470–1477 (2011)CrossRefGoogle Scholar
  234. 234.
    Y.T. Wang et al., A novel l-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J. Electroanal. Chem. 661(1), 8–12 (2011)CrossRefGoogle Scholar
  235. 235.
    U. Spohn, D. Narasaiah, L. Gorton, The influence of the carbon paste composition on the performance of an amperometric bienzyme sensor for L-lactate. Electroanalysis 8(6), 507–514 (1996)CrossRefGoogle Scholar
  236. 236.
    M.R. Romero, F. Garay, A.M. Baruzzi, Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes. Sens. Actuators B Chem. 131(2), 590–595 (2008)CrossRefGoogle Scholar
  237. 237.
    M.M. Rahman, M.J.A. Shiddiky, M.A. Rahman, Y.-B. Shim, A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal. Biochem. 384(1), 159–165 (2009)CrossRefGoogle Scholar
  238. 238.
    E. Al-Jawadi, S. Pöller, R. Haddad, W. Schuhmann, NADH oxidation using modified electrodes based on lactate and glucose dehydrogenase entrapped between an electrocatalyst film and redox catalyst-modified polymers. Microchim. Acta 177(3–4), 405–410 (2012)CrossRefGoogle Scholar
  239. 239.
    E.I. Yashina et al., Sol-gel immobilization of lactate oxidase from organic solvent: toward the advanced lactate biosensor. Anal. Chem. 82(5), 1601–1604 (2010)CrossRefGoogle Scholar
  240. 240.
    M. Tsuchiya, H. Matsuhisa, Y. Hasebe, Selective amperometric response to hydrogen peroxide at a protein-incorporated sol-gel hybrid film-modified platinum electrode. Bunseki Kagaku 61(5), 425–428 (2012)CrossRefGoogle Scholar
  241. 241.
    F. Palmisano, G.E.D. Benedetto, C.G. Zambonin, Lactate amperometric biosensor based on an electrosynthesizedbilayer film with covalently immobilized enzyme. Analyst 122(4), 365–369 (1997)CrossRefGoogle Scholar
  242. 242.
    C.-L. Lin, C.-L. Shih, L.-K. Chau, Amperometric l-Lactate sensor based on sol-gel processing of an enzyme-linked silicon alkoxide. Anal. Chem. 79(10), 3757–3763 (2007)CrossRefGoogle Scholar
  243. 243.
    E. Szymańska, K. Winnicka, Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar. Drugs 13(4), 1819–1846 (2015)CrossRefGoogle Scholar
  244. 244.
    R. Garjonyte, V. Melvydas, A. Malinauskas, Mediated amperometric biosensors for lactic acid based on carbon paste electrodes modified with baker’s yeast Saccharomyces cerevisiae. Bioelectrochemistry 68(2), 191–196 (2006)CrossRefGoogle Scholar
  245. 245.
    M. Piano, S. Serban, R. Pittson, G.A. Drago, J.P. Hart, Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt, coated with lactate dehydrogenase and NAD+. Talanta 82(1), 34–37 (2010)CrossRefGoogle Scholar
  246. 246.
    N. Hamdi, J. Wang, H.G. Monbouquette, Polymer films as permselective coatings for H2O2-sensing electrodes. J. Electroanal. Chem. 581(2), 258–264 (2005)CrossRefGoogle Scholar
  247. 247.
    K. Bridge, F. Davis, S. Collyer, S.P.J. Higson, Flexible ultrathin PolyDVB/EVB composite membranes for the optimization of a whole blood glucose sensor. Electroanalysis 19(4), 487–495 (2007)CrossRefGoogle Scholar
  248. 248.
    K. Bridge, F. Davis, S.D. Collyer, S.P.J. Higson, Flexible ultrathin PolyDVB/EVB composite membranes for the optimization of a lactate sensor. Electroanalysis 19(5), 567–574 (2007)CrossRefGoogle Scholar
  249. 249.
    S. Cosnier, Biosensors based on electropolymerized films: new trends. Anal. Bioanal. Chem. 377(3), 507–520 (2003)CrossRefGoogle Scholar
  250. 250.
    C. Qin et al., Amperometric enzyme electrodes of glucose and lactate based on poly(diallyldimethylammonium)-alginate-metal ion-enzyme biocomposites. Anal. Chim. Acta 720, 49–56 (2012)CrossRefGoogle Scholar
  251. 251.
    A. Radoi, D. Moscone, G. Palleschi, Sensing the lactic acid in probiotic yogurts using an L-Lactate biosensor coupled with a microdialysis fiber inserted in a flow analysis system. Anal. Lett. 43(7–8), 1301–1309 (2010)CrossRefGoogle Scholar
  252. 252.
    J.J. Burmeister, M. Palmer, G.A. Gerhardt, l-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens. Bioelectron. 20(9), 1772–1779 (2005)CrossRefGoogle Scholar
  253. 253.
    J. Park, J. Chang, M. Choi, J.J. Pak, D.-Y. Lee, Y.K. Pak, Microfabirated clark-type sensor for measuring dissolved oxygen. IEEE Sens. 1412–1415 (2007)Google Scholar
  254. 254.
    K.K. Tremper, T.W. Rutter, J.A. Wahr, Monitoring oxygenation. Curr. Anaesth. Crit. Care 4(4), 213–222 (1993)CrossRefGoogle Scholar
  255. 255.
    C. Cody, D.J. Buggy, B. Marsh, D.C. Moriarity, Subcutaneous tissue oxygen tension after coronary revascularisation with and without cardiopulmonary bypass. Anaesthesia 59(3), 237–242 (2004)CrossRefGoogle Scholar
  256. 256.
    I. Bromley, Transcutaneous monitoring—understanding the principles. Infant 4(3), 95–98 (2008)Google Scholar
  257. 257.
    L.S. Mortensen et al., Identifying hypoxia in human tumors: a correlation study between 18F-FMISO PET and the Eppendorf oxygen-sensitive electrode. Acta Oncol. 49(7), 934–940 (2010)CrossRefGoogle Scholar
  258. 258.
    T.H. Williamson, J. Grewal, B. Gupta, B. Mokete, M. Lim, C.H. Fry, Measurement of PO2 during vitrectomy for central retinal vein occlusion, a pilot study. Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1019–1023 (2009)CrossRefGoogle Scholar
  259. 259.
    Y.-H. Park, Y.-B. Shui, D.C. Beebe, Comparison of two probe designs for determining intraocular oxygen distribution. Br. J. Ophthalmol. p. bjo.2010.186064 (2010)Google Scholar
  260. 260.
    L. Toma-Daşu, A. Waites, A. Daşu, J. Denekamp, Theoretical simulation of oxygen tension measurement in tissues using a microelectrode: I. The response function of the electrode. Physiol. Meas. 22(4), 713–725 (2001)CrossRefGoogle Scholar
  261. 261.
    R.A. Linsenmeier, C.M. Yancey, Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J. Appl. Physiol. Bethesda Md 1985, 63(6), 2554–2557 (1987)Google Scholar
  262. 262.
    F.B. Bolger et al., Characterisation of carbon paste electrodes for real-time amperometric monitoring of brain tissue oxygen. J. Neurosci. Methods 195(2), 135–142 (2011)CrossRefGoogle Scholar
  263. 263.
    G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)CrossRefGoogle Scholar
  264. 264.
    G.S. Wilson, M. Ammam, In vivo biosensors. FEBS J. 274(21), 5452–5461 (2007)CrossRefGoogle Scholar
  265. 265.
    A. Guiseppi-Elie, S. Brahim, G. Slaughter, K.R. Ward, Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sens. J. 5(3), 345–355 (2005)CrossRefGoogle Scholar
  266. 266.
    A.R.A. Rahman, G. Justin, A. Guiseppi-Elie, Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 75–85 (2008)CrossRefGoogle Scholar
  267. 267.
    A.R.A. Rahman, G. Justin, A. Guiseppi-Wilson, A. Guiseppi-Elie, Fabrication and packaging of a dual sensing electrochemical biotransducer for glucose and lactate useful in intramuscular physiologic status monitoring. IEEE Sens. J. 9(12), 1856–1863 (2009)CrossRefGoogle Scholar
  268. 268.
    A. Guiseppi-Elie, An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal. Bioanal. Chem. 399(1), 403–419 (2010)CrossRefGoogle Scholar
  269. 269.
    C.N. Kotanen, A. Guiseppi-Elie, Characterization of a wireless potentiostat for integration with a novel implantable biotransducer. IEEE Sens. J. 14(3), 768–776 (2014)CrossRefGoogle Scholar
  270. 270.
    Pinnacle Technology, Inc. [Online]. Available: http://www.pinnaclet.com/. Accessed: 28 Jan 2016
  271. 271.
    A. Weltin, B. Enderle, J. Kieninger, G.A. Urban, Multiparametric, flexible microsensor platform for metabolic monitoring. IEEE Sens. J. 14(10), 3345–3351 (2014)CrossRefGoogle Scholar
  272. 272.
    C.A. Cordeiro, M.G. de Vries, W. Ngabi, P.E. Oomen, T.I.F.H. Cremers, B.H.C. Westerink, In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. Biosens. Bioelectron. 67, 677–686 (2015)Google Scholar
  273. 273.
    G. Calia et al., Biotelemetric monitoring of brain neurochemistry in conscious rats using microsensors and biosensors. Sensors 9(4), 2511–2523 (2009)CrossRefGoogle Scholar
  274. 274.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, USA)Google Scholar
  275. 275.
    P.T. Kissinger, W.R. Heineman, Cyclic voltammetry. J. Chem. Educ. 60(9), 702 (1983)CrossRefGoogle Scholar
  276. 276.
    P. Kissinger, W.R. Heineman, Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded (CRC Press, New York, 1996)Google Scholar
  277. 277.
    A.J. Bard, M. Stratmann, F. Scholz, C.J. Pickett, Encyclopedia of Electrochemistry, 7A, Inorganic ChemistryGoogle Scholar
  278. 278.
    A. Hierlemann, U. Frey, S. Hafizovic, F. Heer, Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc. IEEE 99(2), 252–284 (2011)CrossRefGoogle Scholar
  279. 279.
    M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3(6), 388–397 (2009)CrossRefGoogle Scholar
  280. 280.
    M. Sprenger, Learning and Memory: The Brain in Action. ASCD (1999)Google Scholar
  281. 281.
    R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, N.V. Thakor, 16-channel integrated potentiostat for distributed neurochemical sensing. IEEE Trans. Circuits Syst. Regul. Pap. 53(11), 2371–2376 (2006)CrossRefGoogle Scholar
  282. 282.
    K. Murari, M. Stanacevic, G. Cauwenberghs, N.V. Thakor, Integrated potentiostat for neurotransmitter sensing. IEEE Eng. Med. Biol. Mag. 24(6), 23–29 (2005)CrossRefGoogle Scholar
  283. 283.
    J. Lerma, A.S. Herranz, O. Herreras, V. Abraira, R.M. del Rio, In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 384(1), 145–155 (1986)CrossRefGoogle Scholar
  284. 284.
    M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, N.V. Thakor, VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst. 1(1), 63–72 (2007)CrossRefGoogle Scholar
  285. 285.
    M. Roham et al., A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans. Biomed. Circuits Syst. 2(1), 3–9 (2008)CrossRefGoogle Scholar
  286. 286.
    S. Ayers, K. Berberian, K.D. Gillis, M. Lindau, B.A. Minch, Post-CMOS fabrication of working electrodes for on-chip recordings of transmitter release. IEEE Trans. Biomed. Circuits Syst. 4(2), 86–92 (2010)CrossRefGoogle Scholar
  287. 287.
    M.H. Nazari, H. Mazhab-Jafari, L. Leng, A. Guenther, R. Genov, CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE Trans. Biomed. Circuits Syst. 7(3), 338–348 (2013)CrossRefGoogle Scholar
  288. 288.
    G. Massicotte, S. Carrara, G. Di Micheli, M. Sawan, A CMOS amperometric system for multi-neurotransmitter detection. IEEE Trans. Biomed. Circuits Syst. 99, 1–1 (2016)Google Scholar
  289. 289.
    C. Yang, M.E. Denno, P. Pyakurel, B.J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal. Chim. Acta 887, 17–37 (2015)CrossRefGoogle Scholar
  290. 290.
    S. Sainio et al., Integrated carbon nanostructures for detection of neurotransmitters. Mol. Neurobiol. 52(2), 859–866 (2015)CrossRefGoogle Scholar
  291. 291.
    N. Xiao, B.J. Venton, Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests. Anal. Chem. 84(18), 7816–7822 (2012)CrossRefGoogle Scholar
  292. 292.
    S.B. Hočevar, J. Wang, R.P. Deo, M. Musameh, B. Ogorevc, Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 17(5–6), 417–422 (2005)CrossRefGoogle Scholar
  293. 293.
    K.M. Mitchell, Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Anal. Chem. 76(4), 1098–1106 (2004)CrossRefGoogle Scholar
  294. 294.
    M.G. Garguilo, A.C. Michael, Enzyme-modified electrodes for peroxide, choline, and acetylcholine. TrAC Trends Anal. Chem. 14(4), 164–169 (1995)CrossRefGoogle Scholar
  295. 295.
    J. Cui, N.V. Kulagina, A.C. Michael, Pharmacological evidence for the selectivity of in vivo signals obtained with enzyme-based electrochemical sensors. J. Neurosci. Methods 104(2), 183–189 (2001)CrossRefGoogle Scholar
  296. 296.
    I. Suzuki, M. Fukuda, K. Shirakawa, H. Jiko, M. Gotoh, Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49, 270–275 (2013)CrossRefGoogle Scholar
  297. 297.
    M. Ganesana, J.S. Erlichman, S. Andreescu, Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radic. Biol. Med. 53(12), 2240–2249 (2012)CrossRefGoogle Scholar
  298. 298.
    P. Fattahi, G. Yang, G. Kim, M.R. Abidian, A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014)CrossRefGoogle Scholar
  299. 299.
    M.M. Ahmadi, G.A. Jullien, Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans. Circuits Syst. Regul. Pap. 56(7), 1339–1348 (2009)MathSciNetCrossRefGoogle Scholar
  300. 300.
    M.M. Ahmadi, G.A. Jullien, A very low power CMOS potentiostat for bioimplantable applications, in Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC’05) (2005), pp. 184–189Google Scholar
  301. 301.
    L. Busoni, M. Carlà, L. Lanzi, A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev. Sci. Instrum. 73(4), 1921–1923 (2002)CrossRefGoogle Scholar
  302. 302.
    P. Kassanos, R.K. Iles, R.H. Bayford, A. Demosthenous, Towards the development of an electrochemical biosensor for hCGβ detection. Physiol. Meas. 29(6), S241 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Hamlyn CentreImperial College LondonLondonUK

Personalised recommendations