Skip to main content

Observation of Exciton Spin Transport

  • Chapter
  • First Online:
  • 485 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter presents the observation of the spin transport of spatially indirect excitons in GaAs coupled quantum wells (CQW). The spin relaxation time of indirect excitons is orders of magnitude longer than the spin relaxation time of direct excitons. In combination with a long lifetime of indirect excitons, this makes possible spin transport of indirect excitons over substantial distances. This chapter covers in detail the theoretical considerations that motivated this experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • A. Alexandrou, J.A. Kash, E.E. Mendez, M. Zachau, J.M. Hong, T. Fukuzawa, Y. Hase, Electric-field effects on exciton lifetimes in symmetric coupled GaAs/Al0.3Ga0.7As double quantum wells. Phys. Rev. B 42(14), 9225–9228 (1990)

    Google Scholar 

  • P. Andreakou, S. Cronenberger, D. Scalbert, A. Nalitov, N.A. Gippius, A.V. Kavokin, M. Nawrocki, J.R. Leonard, L.V. Butov, K.L. Campman, A.C. Gossard, M. Vladimirova, Nonlinear optical spectroscopy of indirect excitons in coupled quantum wells. Phys. Rev. B 91, 125437 (2015)

    Google Scholar 

  • P. Andreakou, A.V. Mikhailov, S. Cronenberger, D. Scalbert, A. Nalitov, A.V. Kavokin, M. Nawrocki, L.V. Butov, K.L. Campman, A.C. Gossard, M. Vladimirova, Influence of magnetic quantum confined stark effect on the spin lifetime of indirect excitons. Phys. Rev. B 93, 115410 (2016)

    Google Scholar 

  • L.C. Andreani, F. Bassani, Exchange interaction and polariton effects in quantum-well excitons. Phys. Rev. B 41(11), 7536–7544 (1990)

    Google Scholar 

  • D.D. Awschalom, M.E. Flatté, Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007)

    Google Scholar 

  • J. Bass, W.P. Pratt, Jr., Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19(18), 183201 (2007)

    Google Scholar 

  • L.V. Butov, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, A.C. Gossard, Magneto-optics of the spatially separated electron and hole layers in GaAs/Al x Ga1−x As coupled quantum wells. Phys. Rev. B 60(12), 8753–8758 (1999)

    Google Scholar 

  • I. D’Amico, G. Vignale, Spin diffusion in doped semiconductors: the role of Coulomb interactions. Europhys. Lett. 55(4), 566 (2001)

    Google Scholar 

  • B. Deveaud, F. Clerot, N. Roy, K. Satzke, B. Sermage, D.S. Katzer, Enhanced radiative recombination of free excitons in GaAs quantum wells. Phys. Rev. Lett. 67(17), 2355–2358 (1991)

    Google Scholar 

  • M.I. D’yakonov, V.Yu. Kachorovskiı̆, Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond. 20, 110 (1986)

    Google Scholar 

  • M.I. D’yakonov, V.I. Perel’, Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35(6), 459–460 (1971)

    Google Scholar 

  • R. Finkelstein, K. Cohen, B. Jouault, K. West, L.N. Pfeiffer, M. Vladimirova, R. Rapaport, Transition from spin-orbit to hyperfine dominated spin relaxation in a cold fluid of dipolar excitons. arXiv:1706.00861 (2017)

    Google Scholar 

  • A. Gärtner, A.W. Holleitner, J.P. Kotthaus, D. Schuh, Drift mobility of long-living excitons in coupled GaAs quantum wells. Appl. Phys. Lett. 89(5), 052108 (2006)

    Google Scholar 

  • M. Hagn, A. Zrenner, G. Böhm, G. Weimann, Electric-field-induced exciton transport in coupled quantum well structures. Appl. Phys. Lett. 67(2), 232–234 (1995)

    Google Scholar 

  • A.T. Hammack, L.V. Butov, L. Mouchliadis, A.L. Ivanov, A.C. Gossard, Kinetics of indirect excitons in an optically induced trap in GaAs quantum wells. Phys. Rev. B 76(19), 193308 (2007)

    Google Scholar 

  • A.A. High, E.E. Novitskaya, L.V. Butov, M. Hanson, A.C. Gossard, Control of exciton fluxes in an excitonic integrated circuit. Science 321(5886), 229–231 (2008)

    Google Scholar 

  • A.A. High, A.T. Hammack, J.R. Leonard, S. Yang, L.V. Butov, T. Ostatnicky, A.V. Kavokin, A.C. Gossard, Spin texture in a cold exciton gas. Phys. Rev. Lett 110(24), 246403 (2013)

    Google Scholar 

  • A.L. Ivanov, L.E. Smallwood, A.T. Hammack, S. Yang, L.V. Butov, A.C. Gossard, Origin of the inner ring in photoluminescence patterns of quantum well excitons. Europhys. Lett. 73(6), 920–926 (2006)

    Google Scholar 

  • E.L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, 2005)

    Google Scholar 

  • K. Kowalik-Seidl, X.P. Vögele, B.N. Rimpfl, S. Manus, J.P. Kotthaus, D. Schuh, W. Wegscheider, A.W. Holleitner, Long exciton spin relaxation in coupled quantum wells. Appl. Phys. Lett. 97, 011104 (2010)

    Google Scholar 

  • A.V. Larionov, V.B. Timofeev, J. Hvam, K. Soerensen, Interwell excitons in GaAs/AlGaAs double quantum wells and their collective properties. Sov. Phys. JETP 90(6), 1093–1104 (2000)

    Google Scholar 

  • M.Z. Maialle, E.A. de Andrada e Silva, L.J. Sham, Exciton spin dynamics in quantum wells. Phys. Rev. Lett. 47(23), 15776–15788 (1993)

    Google Scholar 

  • M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertholen, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard, Localization-delocalization transition of indirect excitons in lateral electrostatic lattices. Phys. Rev. Lett. 102(18), 186803 (2009)

    Google Scholar 

  • C. Schindler, R. Zimmermann, Analysis of the exciton-exciton interaction in semiconductor quantum wells. Phys. Rev. B 78(4), 045313 (2008)

    Google Scholar 

  • J.A.H. Stotz, R. Hey, P.V Santos, K.H. Ploog, Coherent spin transport through dynamic quantum dots. Nat. Mater. 4, 585 (2005)

    Google Scholar 

  • T. Uenoyama, L.J. Sham, Carrier relaxation and luminescence polarization in quantum wells. Phys. Rev. B 42(11), 7114 (1990)

    Google Scholar 

  • A. Vinattieri, Jagdeep Shah, T.C. Damen, D.S. Kim, L.N. Pfeiffer, M.Z. Maialle, L.J. Sham, Exciton dynamics in GaAs quantum wells under resonant excitation. Phys. Rev. B 50(15), 10868–10879 (1994)

    Google Scholar 

  • C.P. Weber, N. Gedik, J.E. Moore, J. Orenstein, J. Stephens, D.D. Awschalom, Observation of spin Coulomb drag in a two-dimensional electron gas. Nature 437, 1330–1333 (2005)

    Article  ADS  Google Scholar 

  • S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonard, J. (2018). Observation of Exciton Spin Transport. In: Exciton Transport Phenomena in GaAs Coupled Quantum Wells. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69733-8_5

Download citation

Publish with us

Policies and ethics