Skip to main content

Introduction

  • Chapter
  • First Online:
  • 532 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter motivates the study of indirect excitons and provides an introduction and overview of the physics of indirect excitons, focusing on the physics relevant to excitonic devices and exciton spin physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • M. Alloing, A. Lemaître, F. Dubin, Quantum signature blurred by disorder in indirect exciton gases. Europhys. Lett. 93(1), 17007 (2011)

    Google Scholar 

  • M. Alloing, A. Lemaître, E. Galopin, F. Dubin, Non-linear dynamics and inner-ring photoluminescence pattern of indirect excitons. e-print arXiv:1202.1985 (2012)

    Google Scholar 

  • A. Amo, T.C.H. Liew, C. Adrados, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010)

    Article  ADS  Google Scholar 

  • L.C. Andreani, F. Bassani, Exchange interaction and polariton effects in quantum-well excitons. Phys. Rev. B 41(11), 7536–7544 (1990)

    Article  ADS  Google Scholar 

  • L.C. Andreani, F. Tassone, F. Bassani, Radiative lifetime of free excitons in quantum wells. Solid State Commun. 77(9), 641–645 (1991)

    Article  ADS  Google Scholar 

  • I. Appelbaum, B. Huang, D.J. Monsma, Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007)

    Article  ADS  Google Scholar 

  • A.G. Aronov, G.E. Pikus, Spin injection into semiconductros. Sov. Phys. Semicond. 10, 698 (1976)

    Google Scholar 

  • D.D. Awschalom, M.E. Flatté, Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007)

    Article  Google Scholar 

  • M. Baldo, V. Stojanović, Optical switching: excitonic interconnects. Nat. Photon. 3, 558–560 (2009)

    Article  ADS  Google Scholar 

  • D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, All-optical polariton transistor. Nat. Commun. 4, 1778 (2013)

    Article  Google Scholar 

  • L.V. Butov, A.I. Filin, Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation. Phys. Rev. B 58(4), 1980–2000 (1998)

    Article  ADS  Google Scholar 

  • L.V. Butov, A. Imamoglu, A.V. Mintsev, K.L. Campman, A.C. Gossard, Photoluminescence kinetics of indirect excitons in GaAs/Al x Ga1−x As coupled quantum wells. Phys. Rev. B 59(3), 1625 (1999)

    Google Scholar 

  • L.V. Butov, A.C. Gossard, D.S. Chemla, Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002)

    Article  ADS  Google Scholar 

  • S.G. Carter, Z. Chen, S.T. Cundiff, Optical measurement and control of spin diffusion in n-doped GaAs quantum wells. Phys. Rev. Lett. 97(13), 136602 (2006)

    Google Scholar 

  • K. Cohen, R. Rapaport, P.V. Santos, Remote dipolar interactions for objective density calibration and flow control of excitonic fluids. Phys. Rev. Lett. 106, 126402 (2011)

    Article  ADS  Google Scholar 

  • I. D’Amico, G. Vignale, Spin diffusion in doped semiconductors: the role of Coulomb interactions. Europhys. Lett. 55(4), 566 (2001)

    Google Scholar 

  • B. Deveaud, F. Clerot, N. Roy, K. Satzke, B. Sermage, D.S. Katzer, Enhanced radiative recombination of free excitons in GaAs quantum wells. Phys. Rev. Lett. 67(17), 2355–2358 (1991)

    Article  ADS  Google Scholar 

  • M.I. D’yakonov, V.Yu. Kachorovskiı̆, Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond. 20, 110 (1986)

    Google Scholar 

  • M.I. D’yakonov, V.I. Perel’, Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35(6), 459–460 (1971a)

    Google Scholar 

  • M.I. D’yakonov, V.I. Perel’, Possibility of orienting electron spins with current. Sov. Phys. JETP Lett. 13(11), 467 (1971b)

    Google Scholar 

  • M.I. D’yakonov, V.I. Perel’, Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov. Phys. JETP 33, 1053–1059 (1971c)

    Google Scholar 

  • R.I. Dzhioev, B.P. Zakharchenya, V.L. Korenev, M.N. Stepanova, Spin diffusion of optically oriented electrons and photon entrainment in n-gallium arsenide. Fiz. Tverd. Tela 39, 1975–1979 (1997)

    Google Scholar 

  • J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, R.J. Elliott, Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett. 59(20), 2337–2340 (1987)

    Article  ADS  Google Scholar 

  • T. Gao, P.S. Eldridge, T.C.H. Liew, S.I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, P.G. Savvidis, Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012)

    Article  ADS  Google Scholar 

  • A. Gärtner, A.W. Holleitner, J.P. Kotthaus, D. Schuh, Drift mobility of long-living excitons in coupled GaAs quantum wells. Appl. Phys. Lett. 89(5), 052108 (2006)

    Google Scholar 

  • G. Grosso, J. Graves, A.T. Hammack, A.A. High, L.V. Butov, M. Hanson, A.C. Gossard, Excitonic switches operating at around 100 K. Nat. Photon. 3, 577–580 (2009)

    Article  ADS  Google Scholar 

  • M. Hagn, A. Zrenner, G. Böhm, G. Weimann, Electric-field-induced exciton transport in coupled quantum well structures. Appl. Phys. Lett. 67(2), 232–234 (1995)

    Article  ADS  Google Scholar 

  • A.T. Hammack, N.A. Gippius, S. Yang, G.O. Andreev, L.V. Butov, M. Hanson, A.C. Gossard, Excitons in electrostatic traps. J. Appl. Phys. 99(6), 066104 (2006)

    Google Scholar 

  • A.T. Hammack, L.V. Butov, J. Wilkes, L. Mouchliadis, E.A. Muljarov, A.L. Ivanov, A.C. Gossard, Kinetics of the inner ring in the exciton emission pattern in coupled GaAs quantum wells. Phys. Rev. B 80(15), 155331 (2009)

    Google Scholar 

  • A.A. High, A.T. Hammack, L.V. Butov, M. Hanson, A.C. Gossard, Exciton optoelectronic transistor. Opt. Lett. 32(17), 2466–2468 (2007)

    Article  ADS  Google Scholar 

  • A.A. High, E.E. Novitskaya, L.V. Butov, M. Hanson, A.C. Gossard, Control of exciton fluxes in an excitonic integrated circuit. Science 321(5886), 229–231 (2008)

    Article  ADS  Google Scholar 

  • A.A. High, A.K. Thomas, G. Grosso, M. Remeika, A.T. Hammack, A.D. Meyertholen, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard, Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap. Phys. Rev. Lett. 103(8), 087403 (2009)

    Google Scholar 

  • J.E. Hirsch, Spin hall effect. Phys. Rev. Lett. 83(9), 1834–1837 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • A.L. Ivanov, L.E. Smallwood, A.T. Hammack, S. Yang, L.V. Butov, A.C. Gossard, Origin of the inner ring in photoluminescence patterns of quantum well excitons. Europhys. Lett. 73(6), 920–926 (2006)

    Article  ADS  Google Scholar 

  • J.M. Kikkawa, D.D. Awschalom, Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999)

    Article  ADS  Google Scholar 

  • C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, NJ, 2005)

    MATH  Google Scholar 

  • Y.Y. Kuznetsova, M. Remeika, A.A. High, A.T. Hammack, L.V. Butov, M. Hanson, A.C. Gossard, All-optical excitonic transistor. Opt. Lett. 35(10), 1587–1589 (2010)

    Article  ADS  Google Scholar 

  • A.V. Larionov, V.B. Timofeev, J. Hvam, K. Soerensen, Interwell excitons in GaAs/AlGaAs double quantum wells and their collective properties. Sov. Phys. JETP 90(6), 1093–1104 (2000)

    Article  ADS  Google Scholar 

  • J.R. Leonard, S. Yang, L.V. Butov, A.C. Gossard, Spin transport of indirect excitons in GaAs coupled quantum wells (2008). arXiv:0808.2402v3

    Google Scholar 

  • J.R. Leonard, M. Remeika, M.K. Chu, Y.Y. Kuznetsova, A.A. High, L.V. Butov, J. Wilkes, M. Hanson, A.C. Gossard, Transport of indirect excitons in a potential energy gradient. Appl. Phys. Lett. 100(23), 231106 (2012)

    Google Scholar 

  • M.Z. Maialle, E.A. de Andrada e Silva, L.J. Sham, Exciton spin dynamics in quantum wells. Phys. Rev. Lett. 47(23), 15776–15788 (1993)

    Google Scholar 

  • D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B 32(2), 1043–1060 (1985)

    Article  ADS  Google Scholar 

  • H.S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, J. Bloch, Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013)

    Article  ADS  Google Scholar 

  • M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertholen, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard, Localization-delocalization transition of indirect excitons in lateral electrostatic lattices. Phys. Rev. Lett. 102(18), 186803 (2009)

    Google Scholar 

  • M. Remeika, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard, Two-dimensional electrostatic lattices for indirect excitons. Appl. Phys. Lett. 100(6), 061103 (2012)

    Google Scholar 

  • G.J. Schinner, E. Schubert, M.P. Stallhofer, J.P. Kotthaus, D. Schuh, A.K. Rai, D. Reuter, A.D. Wieck, A.O. Govorov, Electrostatically trapping indirect excitons in coupled In x Ga1−x As quantum wells. Phys. Rev. B 83, 165308 (2011)

    Article  ADS  Google Scholar 

  • V. Sih, R.C. Myers, Y.K. Kato, W.H. Lau, A.C. Gossard, D.D. Awschalom, Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nat. Phys. 1, 31–35 (2005)

    Article  Google Scholar 

  • C. Sturm, D. Tanese, H.S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, J. Bloch, All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer. Nat. Commun. 5, 3278 (2014)

    Article  Google Scholar 

  • T. Uenoyama, L.J. Sham, Carrier relaxation and luminescence polarization in quantum wells. Phys. Rev. B 42(11), 7114 (1990)

    Google Scholar 

  • L. Viña, Spin relaxation in low-dimensional systems. J. Phys. Condens. Matter 11, 5929–5952 (1999)

    Article  ADS  Google Scholar 

  • A. Vinattieri, J. Shah, T.C. Damen, D.S. Kim, L.N. Pfeiffer, M.Z. Maialle, L.J. Sham, Exciton dynamics in GaAs quantum wells under resonant excitation. Phys. Rev. B 50(15), 10868–10879 (1994)

    Article  ADS  Google Scholar 

  • X.P. Vögele, D. Schuh, W. Wegscheider, J.P. Kotthaus, A.W. Holleitner, Density enhanced diffusion of dipolar excitons within a one-dimensional channel. Phys. Rev. Lett. 103(12), 126402 (2009)

    Google Scholar 

  • Z. Vörös, R. Balili, D.W. Snoke, L. Pfeiffer, K. West, Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94(22), 226401 (2005)

    Google Scholar 

  • C.P. Weber, N. Gedik, J.E. Moore, J. Orenstein, J. Stephens, D.D. Awschalom, Observation of spin Coulomb drag in a two-dimensional electron gas. Nature 437, 1330–1333 (2005)

    Article  ADS  Google Scholar 

  • A.G. Winbow, J.R. Leonard, M. Remeika, Y.Y. Kuznetsova, A.A. High, A.T. Hammack, L.V. Butov, J. Wilkes, A.A. Guenther, A.L. Ivanov, M. Hanson, A.C. Gossard, Electrostatic conveyer for excitons. Phys. Rev. Lett. 106(19), 196806 (2011)

    Google Scholar 

  • R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin/Heidelberg/New York, 2003)

    Book  Google Scholar 

  • I.A. Young, E. Mohammed, J.T.S. Liao, A.M. Kern, S. Palermo, B.A. Block, M.R. Reshotko, P.L.D. Chang, Optical I/O technology for tera-scale computing. IEEE J. Solid State Circuits 45, 235 (2010)

    Article  Google Scholar 

  • P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Heidelberg/Dordrecht/London/New York, 2005)

    Book  MATH  Google Scholar 

  • S. Zimmermann, A.O. Govorov, W. Hansen, J.P. Kotthaus, M. Bichler, W. Wegscheider, Lateral superlattices as voltage-controlled traps for excitons. Phys. Rev. B 56(20), 13414–13421 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonard, J. (2018). Introduction. In: Exciton Transport Phenomena in GaAs Coupled Quantum Wells. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69733-8_1

Download citation

Publish with us

Policies and ethics