Skip to main content

Computing Invariants of the Weil Representation

  • Conference paper
  • First Online:

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 10))

Abstract

We propose an algorithm for computing bases and dimensions of spaces of invariants of Weil representations of \({\mathrm {SL}}_2(\mathbb {Z})\) associated to finite quadratic modules. We prove that these spaces are defined over \(\mathbb {Z}\), and that their dimension remains stable if we replace the base field by suitable finite prime fields.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    However, if (A, Q) possesses a self-dual isotropic subgroup U (i.e. a subgroup which equals its dual with respect to the bilinear form associated to Q and such that Q(x) = 0 for all x in U) then the characteristic function of U is quickly checked to be an invariant. Moreover, one can show that in this case the characteristic functions of the self-dual isotropic subgroups span in fact the space \(\mathbb {C}[A]^G\) (A proof of this will be given in [10]). An arbitrary finite quadratic module does not necessarily possess self-dual isotropic subgroups and still admits nonzero invariants if its order is big enough.

  2. 2.

    An implementation is available at [4].

  3. 3.

    However, in [1] a different and simpler formula is given, which expresses the traces of the Weil representations in terms of the natural invariants for the conjugacy classes of \({\mathrm {SL}}_2(\mathbb {Z})\).

  4. 4.

    We say that a subspace Vof \(\mathbb {C}[A]\) is defined over the ring R if it possesses a basis whose elements are in R[A].

  5. 5.

    For this one needs that \(e(-\operatorname {sig}(\mathfrak {A})/8)/\sqrt {{\mathrm {card}}\left (A\right )}\) is in K N , which can be read off from Milgram’s formula.

References

  1. Boylan, H., Skoruppa, N.-P.: Explicit formulas for Weil representations of SL(2) (2017). Preprint

    Google Scholar 

  2. Brown, K.S.: Cohomology of Groups. Springer, New York (1982)

    Book  MATH  Google Scholar 

  3. Bruinier, J.H., Ehlen, S., Freitag, E.: Lattices with many Borcherds products. Math. Comp. 85(300), 1953–1981 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ehlen, S., Skoruppa, N.-P.: Computing invariants of the Weil representation, source code repository (Version 0.1) (2017). http://www.github.com/sehlen/weil_invariants

  5. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer, New York (1973). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73

    Google Scholar 

  6. Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43(1), 111–177, 238 (1979)

    Google Scholar 

  7. Nobs, A.: Die irreduziblen Darstellungen der Gruppen SL 2(Z p ), insbesondere SL 2(Z 2). I. Comment. Math. Helv. 51(4), 465–489 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nobs, A., Wolfart, J.: Die irreduziblen Darstellungen der Gruppen SL 2(Z p ), insbesondere SL 2(Z p ). II. Comment. Math. Helv. 51(4), 491–526 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shimura, G.: On modular forms of half integral weight. Ann. Math. (2) 97, 440–481 (1973)

    Google Scholar 

  10. Skoruppa, N.-P.: Weil representations associated to finite quadratic modules and vector-valued modular forms (2016). Preprint

    Google Scholar 

  11. Skoruppa, N.P., et al.: Finite Quadratic Modules Package (Version 1.0). The Countnumber Team (2016). http://data.countnumber.de

  12. Stein, W.A., et al.: Sage Mathematics Software (Version 7.6). The Sage Development Team (2017). http://www.sagemath.org

  13. Strömberg, F.: Weil representations associated with finite quadratic modules. Math. Z. 275(1–2), 509–527 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wall, C.T.C.: Quadratic forms on finite groups, and related topics. Topology 2, 281–298 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wall, C.T.C.: Quadratic forms on finite groups. II. Bull. Lond. Math. Soc. 4, 156–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Jonathan Schürr for carefully reading the manuscript and correcting various little errors, and we thank the anonymous referee for his very detailed report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Ehlen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ehlen, S., Skoruppa, NP. (2017). Computing Invariants of the Weil Representation. In: Bruinier, J., Kohnen, W. (eds) L-Functions and Automorphic Forms. Contributions in Mathematical and Computational Sciences, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-69712-3_5

Download citation

Publish with us

Policies and ethics