Skip to main content

Liftings and Borcherds Products

  • Conference paper
  • First Online:
Book cover L-Functions and Automorphic Forms

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 10))

Abstract

This chapter serves as a brief introduction to the theory of theta-liftings with the main focus on Borcherds’ singular theta-lift and the construction of Borcherds products. Thus, after a few initial examples for liftings, we proceed to develop the tools needed to understand how the Borcherds lift works. Namely, we go through the construction of symmetric domains for orthogonal groups, introduce vector-valued modular forms and explain the definition of the Siegel theta-function. Then, we give a detailed treatment of the regularization recipe for the theta-integral and of the proof for the key properties of the additive lift: the location and type of its singularities. Finally, in the closing section, we sketch how to obtain a multiplicative lifting and the Borcherds’ products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    If 0 happens to be a pole, yet another, slight variation of this recipe is needed, see [6].

  2. 2.

    If we want to avoid a rational weight for Ψ(z, f), we must further assume that \(c^+(0,0) \in 2{\mathbb {Z}}\). In this case, the multiplier system in i) is a character [see 6, Theorem 3.22 i)].

References

  1. Alfes-Neumann, C.: An introduction to the theory of harmonic weak Maass forms. In: Bruinier, J.H., Kohnen, W. (eds.) L-Functions and Automorphic Forms. Contributions in Mathematical and Computational Sciences, vol. 12. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-69712-3_17

  2. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics, vol. 41, 2nd edn. Springer, New York (1990)

    Google Scholar 

  3. Borcherds, R.E.: Automorphic forms on O s+2,2(R) and infinite products. Invent. Math. 120(1), 161–213 (1995)

    Google Scholar 

  4. Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)

    Google Scholar 

  5. Borel, A., Ji, L.: Compactifications of Symmetric and Locally Symmetric Spaces. Mathematics: Theory and Applications. Birkhäuser, Boston (2006)

    Google Scholar 

  6. Bruinier, J.H.: Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors. Lecture Notes in Mathematics, vol. 1780. Springer, Berlin (2002)

    Google Scholar 

  7. Bruinier, J.H.: Borcherds Products and Their Applications. Course notes, Bellairs Workshop in Number Theory (2009)

    Google Scholar 

  8. Bruinier, J.H.: Regularized theta lifts for orthogonal groups over totally real fields. J. Reine Angew. Math. 672, 177–222 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125(1), 45–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruinier, J.H., Ono, K.: Heegner divisors, L-functions and harmonic weak Maass forms. Ann. Math. (2) 172(3), 2135–2181 (2010)

    Google Scholar 

  11. Bruinier, J.H., Burgos Gil, J.I., Kühn, U.: Borcherds products and arithmetic intersection theory on Hilbert modular surfaces. Duke Math. J. 139(1), 1–88 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruinier, J.H., van der Geer, G., Harder, G., Zagier, D.: The 1-2-3 of Modular Forms. Universitext. Springer, Berlin (2008). Lectures from the Summer School on Modular Forms and Their Applications held in Nordfjordeid, June 2004, Edited by Kristian Ranestad

    Google Scholar 

  13. Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Berlin (1993)

    Google Scholar 

  15. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, 3rd edn. Springer, New York (1999). With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov

    Google Scholar 

  16. Diamond, F., Shurman, J.: A First Course in Modular Forms. Graduate Texts in Mathematics, vol. 228. Springer, New York (2005)

    Google Scholar 

  17. Doi, K., Naganuma, H.: On the functional equation of certain Dirichlet series. Invent. Math. 9, 1–14 (1969/1970)

    Google Scholar 

  18. Freitag, E.: Modular Forms on the Orthogonal group. Lecture Notes. Heidelberg (2000). http://www.rzuser.uni-heidelberg.de/~t91/skripte/o.ps

    Google Scholar 

  19. Grauert, H., Remmert, R.: Theory of Stein Spaces. Classics in Mathematics. Springer, Berlin (2004). Translated from the German by Alan Huckleberry, Reprint of the 1979 translation

    Google Scholar 

  20. Gross, B., Kohnen, W., Zagier, D.: Heegner points and derivatives of L-series. II. Math. Ann. 278(1–4), 497–562 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gunning, R.C., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-Hall, Inc., Englewood Cliffs (1965)

    MATH  Google Scholar 

  22. Harvey, J.A., Moore, G.: Algebras, BPS states, and strings. Nucl. Phys. B 463(2–3), 315–368 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hofmann, E.: Automorphic Products on Unitary Groups. Ph.D. thesis, TU Darmstadt (2011). http://tuprints.ulb.tu-darmstadt.de/2540/

  24. Hofmann, E.: Borcherds products for U(1, 1). Int. J. Number Theory 9(7), 1801–1820 (2013)

    Google Scholar 

  25. Howe, R.E.: θ-series and invariant theory. In: Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1. Proceedings of Symposia in Pure Mathematics, XXXIII, pp. 275–285. American Mathematical Society, Providence, RI (1979)

    Google Scholar 

  26. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Mathematics, vol. 97, 2nd edn. Springer, New York (1993)

    Google Scholar 

  27. Kohnen, W.: Modular forms of half-integral weight on Γ0(4). Math. Ann. 248(3), 249–266 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kohnen, W.: Newforms of half-integral weight. J. Reine Angew. Math. 333, 32–72 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271(2), 237–268 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kudla, S.S.: Integrals of Borcherds forms. Compos. Math. 137(3), 293–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miyake, T.: Modular Forms. Springer Monographs in Mathematics, English edition. Springer, Berlin (2006). Translated from the 1976 Japanese original by Yoshitaka Maeda

    Google Scholar 

  32. Naganuma, H.: On the coincidence of two Dirichlet series associated with cusp forms of Hecke’s “Neben”-type and Hilbert modular forms over a real quadratic field. J. Math. Soc. Jpn. 25, 547–555 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Niwa, S.: Modular forms of half integral weight and the integral of certain theta-functions. Nagoya Math. J. 56, 147–161 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds.): NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Release 1.0.15 of 2017-06-01

  35. Ono, K.: The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and Q-Series. CBMS Regional Conference Series in Mathematics, vol. 102. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  36. Ray, U.: Automorphic Forms and Lie Superalgebras. Algebra and Applications, vol. 5. Springer, Dordrecht (2006)

    Google Scholar 

  37. Shimura, G.: On modular forms of half integral weight. Ann. Math. (2) 97, 440–481 (1973)

    Google Scholar 

  38. Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J. 58, 83–126 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hofmann, E. (2017). Liftings and Borcherds Products. In: Bruinier, J., Kohnen, W. (eds) L-Functions and Automorphic Forms. Contributions in Mathematical and Computational Sciences, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-69712-3_19

Download citation

Publish with us

Policies and ethics