Skip to main content

Recent Advances in the Use of Silicon-Based Photocathodes for Solar Fuel Production

  • Chapter
  • First Online:
Advances in Silicon Solar Cells

Abstract

With the substantial decrease in the world’s reservoirs of fossil fuels, the need to develop industrial-scale energy-harvesting systems that rely on more sustainable sources is dire. With solar energy being the cheapest, and most giving, research progress utilizing it to replace fossil fuels, as well as to counterbalance the effects of using such fuels, is divided into three tracks: finding cheap and efficient photoabsorbers, devising industrially compatible fabrication procedures, and developing the proposed systems for higher efficiency. Being an abundant element with well-known chemical and electrical properties and well-established fabrication procedures, silicon may be the quickest solution for developing efficient solar energy conversion systems. Indeed, for H2 production and CO2 reduction in particular, Si-based materials with different morphologies, structural forms, and combinations were studied for decades. In this chapter, the recent studies for Si photocathodes are demonstrated in a way to classify the different systems and compare their performance. The use of plain and decorated nanostructured Si, as well as SiC nanostructured crystalline photocathodes for solar H2 production, is briefly presented. Brief insight about amorphous Si and its use for the same purpose is also discussed. Finally, light is shed on the use of Si photocathodes in CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrog. Energy 27, 235 (2002)

    Article  Google Scholar 

  2. K. Sivula, Chimia 67, 155 (2013)

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  4. P.V. Kamat, J. Bisquert, J. Phys. Chem. C 117, 14873 (2013)

    Article  Google Scholar 

  5. H. Wang, T. Deutsch, J. Turner, Electrochem Soc 155, F91 (2008)

    Article  Google Scholar 

  6. N. Serpone, A.V. Emeline, J. Phys. Chem. Lett. 3, 673 (2012)

    Article  Google Scholar 

  7. J. Nozik, Appl. Phys. Lett. 96, 150 (1976)

    Article  Google Scholar 

  8. J. Oh, T.G. Deutsch, H.C. Yuan, H.M. Branz, Energy Environ. Sci. 4, 1690 (2011)

    Article  Google Scholar 

  9. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)

    Article  Google Scholar 

  10. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, M. Grätzel, Energy Environ. Sci. 5, 8673 (2012)

    Article  Google Scholar 

  11. S.D. Tilley, M. Schreier, J. Azevedo, M. Stefik, M. Grätzel, Adv. Funct. Mater. 24, 303 (2014)

    Article  Google Scholar 

  12. C.Y. Lin, Y.H. Lai, D. Mersch, E. Reisner, Chem. Sci. 3, 3482 (2012)

    Article  Google Scholar 

  13. N.K. Awad, E.A. Ashour, N.K. Allam, J Renew Sustainable Energy 6, 022702 (2014)

    Article  Google Scholar 

  14. H. Tang, M.A. Matin, H. Kang, S. Sudhakar, L. Chen, M.M. Al-Jassim, Y. Yan, J. Electron. Mater. 40, 3062 (2012)

    Article  Google Scholar 

  15. Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6, 511 (2012)

    Article  Google Scholar 

  16. Y. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, L. Gong, J. Chen, P. Liu, Y. Tong, Electrochim. Acta 62, 1 (2012)

    Article  Google Scholar 

  17. T.M. McCormick, B.D. Calitree, A. Orchard, N.D. Kraut, F.V. Bright, M.R. Detty, R. Eisenberg, J. Am. Chem. Soc. 132, 15480 (2010)

    Article  Google Scholar 

  18. C.A.N. Fernando, L.L.A. De Silva, R.M. Mehra, K. Takahashi, Semicond. Sci. Technol. 16, 433 (2001)

    Article  Google Scholar 

  19. A. Kay, I. Cesar, M. Grätzel, J. Am. Chem. Soc. 128, 15714 (2006)

    Article  Google Scholar 

  20. M.G. Walter, E.L. Warren, J.R. Mckone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446 (2010)

    Article  Google Scholar 

  21. Z. Zhang, P. Wang, J. Mater. Chem. 22, 2456 (2012)

    Article  Google Scholar 

  22. I. Cesar, K. Sivula, A. Kay, R. Zborik, M. Grätzel, J. Phys. Chem. C 113, 772 (2009)

    Article  Google Scholar 

  23. W. Schockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  Google Scholar 

  24. T. Sjodin, H. Petek, H.L. Dai, Phys. Rev. Lett. 81, 5664 (1998)

    Article  Google Scholar 

  25. S. Cattarin, L.M. Peter, J. Phys. Chem. B 101, 3961 (1997)

    Article  Google Scholar 

  26. N.P. Dasgupta, P. Yang, Front. Phys. 8, 1 (2013)

    Article  Google Scholar 

  27. U. Sim, H.Y. Jeong, T.Y. Yang, T.N. Ki, J. Mater. Chem. A 1, 5414 (2013)

    Article  Google Scholar 

  28. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Nat. Mater. 9, 239 (2010)

    Article  Google Scholar 

  29. J. Jia, H. Zhang, Y. Qiu, L. Wang, Y. Wang, L. Hu, Appl. Surf. Sci. 292, 86 (2014)

    Article  Google Scholar 

  30. J.Y. Jung, M.J. Choi, K. Zhou, X. Li, S.W. Jee, H.D. Um, M.J. Park, K.T. Park, J.H. Bang, J.H. Lee, J. Mater. Chem. A 2, 833 (2014)

    Article  Google Scholar 

  31. X.Q. Bao, R. Ferreira, E. Paz, D.C. Leitao, A. Silva, S. Cardoso, P.P. Freitas, L. Liu, Nano 6, 2097 (2014)

    Google Scholar 

  32. I. Oh, J. Kye, S. Hwang, Nano Lett. 12, 298 (2012)

    Article  Google Scholar 

  33. X. Ao, X. Tong, D.S. Kim, L. Zhang, M. Knez, F. MĂĽller, S. He, V. Schmidt, Appl. Phys. Lett. 101, 111901 (2012)

    Article  Google Scholar 

  34. E.L. Warren, S.W. Boettcher, J.R. McKone, N.S. Lewis, in Proceeding of SPIE7770, Fifth Conference on Solar Hydrogen and Nanotechnology ed. by H. Idriss, H. Wang (Wiley, California, 2010)

    Google Scholar 

  35. J. Ji, H. Zhang, Y. Qiu, Y. Wang, Y. Luo, L. Hu, J. Mater. Sci. Mater. Electron. 24, 4433 (2013)

    Article  Google Scholar 

  36. N.P. Dasgupta, C. Liu, S. Andrews, F.B. Prinz, P. Yang, J. Am. Chem. Soc. 135, 12932 (2013)

    Article  Google Scholar 

  37. J. Kye, M. Shin, B. Lim, J.W. Jang, I. Oh, S. Hwang, ACS Nano 7, 6017 (2013)

    Article  Google Scholar 

  38. B. Segar, A.B. Laursen, P.C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I. Chorkendorff, Angew. Chem. 124, 9262 (2012)

    Article  Google Scholar 

  39. Y. Hou, B.L. Abrams, P.C.K. Vesborg, M.K. Björketun, K. Herbst, L. Bech, A.M. Setti, C.D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J.K. Norskov, I. Chorkendorf, Nat. Mater. 10, 434 (2011)

    Article  Google Scholar 

  40. Z. Xiong, M. Zheng, S. Liu, S. Ma, W. Shen, Nanotechnology 24, 265402 (2013)

    Article  Google Scholar 

  41. Z. Huang, P. Zhong, C. Wang, X. Zhang, C. Zhang, ACS Appl. Mater. Interfaces 5, 1961 (2013)

    Article  Google Scholar 

  42. P.G. Neudeck, in The VLSI Handbook, ed. by W.K. Chen (CRC Press & IEEE Press, Boca Raton, 1999) p. 6–1

    Google Scholar 

  43. M. Kato, T. Yasuda, K. Miyake, M. Ichimura, T. Hatayama, Int. J. Hydrog. Energy 39, 4845 (2014)

    Article  Google Scholar 

  44. J.Y. Hao, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, Int J Hydrog Energy 37, 15038 (2012)

    Article  Google Scholar 

  45. J.Y. Hao, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, Catal. Today 212, 220 (2013)

    Article  Google Scholar 

  46. Q.B. Ma, B. Kaiser, W. Jaegermann, J. Power Sources 253, 41 (2014)

    Article  Google Scholar 

  47. Y. Nariki, Y. Inoue, K. Tanaka, J. Mater. Sci. 25, 3101 (1990)

    Article  Google Scholar 

  48. X. Deng, E.A. Schiff, in Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus (Wiley, Chichester, 2003), p. 504

    Google Scholar 

  49. J.I. Pankove, D.E. Carlson, Ann. Rev. Mater. Sci. 10, 43 (1980)

    Article  Google Scholar 

  50. Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, J. Poortmans, AIP Adv. 4, 057122–057121 (2014)

    Article  Google Scholar 

  51. D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch, Phys. Rev. Lett. 81, 2803 (1998)

    Article  Google Scholar 

  52. H. Mannsperger, S. Kalbitzer, Appl. Phys. A Mater. Sci. Process. 41, 253 (1986)

    Article  Google Scholar 

  53. Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, Y. Hamakawa, J. Appl. Phys. 53, 5273 (1982)

    Article  Google Scholar 

  54. C.R. Wronski, J.M. Pearce, R.J. Koval, A.S. Ferlauto, R.W. Collins, Progress in amorphous silicon based solar cell technology. Paper presented at the world climate & energy event. Rio 67, 6–11 (2002)

    Google Scholar 

  55. H. Zhang, S. Huang, G. Conibeer, Energy Procedia 22, 10 (2012)

    Article  Google Scholar 

  56. A. Madan, P.G. Le Comber, W.E. Spear, J. Non-cryst, Soldiers 20, 239 (1976)

    Google Scholar 

  57. J. GeissbĂĽhler, S. De Wolf, B. Demaurex, J.P. Seif, D.T.L. Alexander, L. Barraud, C. Ballif, Appl. Phys. Lett. 102, 231604 (2013)

    Article  Google Scholar 

  58. A. Kolodziej, Opto-electron. Revue 12, 21 (2004)

    Google Scholar 

  59. T. Shimizu, Jap J App Phys 43, 3257 (2004)

    Article  Google Scholar 

  60. N. Ishii, M. Kumeda, T. Shimizu, Jpn. J. Appl. Phys. 24, L244 (1981)

    Article  Google Scholar 

  61. T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, T. Hirao, Appl. Phys. Lett. 68, 2380 (1996)

    Article  Google Scholar 

  62. D. Adler, Sol. Cell 9, 133 (1983)

    Google Scholar 

  63. D. Adler, J. Phys, Collogues 42, C4–C3 (1981)

    Google Scholar 

  64. R.A. Street, N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975)

    Article  Google Scholar 

  65. Q. Zhang, M. Kumeda, T. Shimizu, Jpn. J. Appl. Phys. 32, L371 (1993)

    Article  Google Scholar 

  66. H.M. Branz HM, Phys. Rev. B 42, 7420 (1990)

    Article  Google Scholar 

  67. H.M. Branz, Sol. Energy Mater. Sol. Cells 78, 425 (2003)

    Article  Google Scholar 

  68. H.M. Branz, Phys. Rev. B 59, 5498 (1999)

    Article  Google Scholar 

  69. H.R. Biswas, B.C. Pan, Sol. Energy Mater. Sol. Cells 78, 447 (2003)

    Article  Google Scholar 

  70. S.T. Pantelides, Phys. Rev. Lett. 57, 2979 (1986)

    Article  Google Scholar 

  71. T. Shimizu, R. Durny, M. Kumeda. in Materials Research Society Symposium Proceedings, ed. by M. Hack, A. Matsuda, E.A. Schiff, R. Schropp, S. Wagner MRS Spring Meeting Symposium A, California, April 1996 (Cambridge University Press, Cambridge, 1996) p. 553

    Google Scholar 

  72. T. Shimizu, M. Kumeda, Jpn. J. Appl. Phys. 38, L911 (1999)

    Article  Google Scholar 

  73. F. Kohler, T. Zimmermann, S. Muthmann, A. Gordijn, R. Carius, IEEE J Photovolt 4, 4 (2014)

    Article  Google Scholar 

  74. D.E. Carlson, Appl. Phys. A Mater. Sci. Process. 41, 305 (1986)

    Article  Google Scholar 

  75. M. Fehr, A. Schnegg, B. Rech, O. Astakhov, F. Finger, R. Bittl, C. Teutloff, K. Lips, Phys. Rev. Lett. 112, 066403–066401 (2014)

    Article  Google Scholar 

  76. J.H. Yoon, J. Appl. Phys. 74, 1838 (1993)

    Article  Google Scholar 

  77. F. Zhu, J. Hu, I. Matulionis, T. Deutsch, N. Gaillard, A. Kunrath, E. Miller, A. Madan, Philos. Mag. 89, 2723 (2009)

    Article  Google Scholar 

  78. Y. Lin, C. Battaglia, M. Boccard, M. Hettick, Z. Yu, C. Ballif, J.W. Ager, A. Javey, Nano Lett. 13, 5615 (2013)

    Article  Google Scholar 

  79. J. Ziegler, B. Kaiser, W. Jaegermann, F. Urbain, J.P. Becker, V. Smirnov, F. Finger, Chem. Phys. Chem. 15, 4026 (2014)

    Article  Google Scholar 

  80. F. Urbain, V. Smirnov, J.P. Becker, U. Rau, F. Finger, j. Ziegler, B. Kaiser, W. Jaegermann, J. Mater. Res. 29, 2605 (2014)

    Article  Google Scholar 

  81. B. Kumar, J.M. Smieja, C.P. Kubiak, J. Phys. Chem. C 114, 14220 (2010)

    Article  Google Scholar 

  82. K. Alenezi, S.K. Ibrahim, P. Li, C.J. Pickett, Chem. Eur. J. 19, 13522 (2013)

    Article  Google Scholar 

  83. T.J. LaTempa, S. Rani, N. Bao, C.A. Grimes, Nano 4, 2245 (2012)

    Google Scholar 

  84. R. Liu, G. Yuan, C.L. Joe, T.E. Lightburn, K.L. Tan, D. Wang, Angew. Chem. 124, 6813 (2012)

    Article  Google Scholar 

  85. R. Liu, C. Stephani, J.J. Han, K.L. Tan, D. Wang, Angew. Chem. 125, 4319 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageh K. Allam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, A.M., Shaheen, B.S., Mohamed, A.M., Amer, A.W., Allam, N.K. (2018). Recent Advances in the Use of Silicon-Based Photocathodes for Solar Fuel Production. In: Ikhmayies, S. (eds) Advances in Silicon Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-69703-1_9

Download citation

Publish with us

Policies and ethics