Recent Advances in the Use of Silicon-Based Photocathodes for Solar Fuel Production

  • Ahmad M. Mohamed
  • Basamat S. Shaheen
  • Aya M. Mohamed
  • Ahmad W. Amer
  • Nageh K. Allam
Chapter

Abstract

With the substantial decrease in the world’s reservoirs of fossil fuels, the need to develop industrial-scale energy-harvesting systems that rely on more sustainable sources is dire. With solar energy being the cheapest, and most giving, research progress utilizing it to replace fossil fuels, as well as to counterbalance the effects of using such fuels, is divided into three tracks: finding cheap and efficient photoabsorbers, devising industrially compatible fabrication procedures, and developing the proposed systems for higher efficiency. Being an abundant element with well-known chemical and electrical properties and well-established fabrication procedures, silicon may be the quickest solution for developing efficient solar energy conversion systems. Indeed, for H2 production and CO2 reduction in particular, Si-based materials with different morphologies, structural forms, and combinations were studied for decades. In this chapter, the recent studies for Si photocathodes are demonstrated in a way to classify the different systems and compare their performance. The use of plain and decorated nanostructured Si, as well as SiC nanostructured crystalline photocathodes for solar H2 production, is briefly presented. Brief insight about amorphous Si and its use for the same purpose is also discussed. Finally, light is shed on the use of Si photocathodes in CO2 reduction.

References

  1. 1.
    S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrog. Energy 27, 235 (2002)CrossRefGoogle Scholar
  2. 2.
    K. Sivula, Chimia 67, 155 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  4. 4.
    P.V. Kamat, J. Bisquert, J. Phys. Chem. C 117, 14873 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Wang, T. Deutsch, J. Turner, Electrochem Soc 155, F91 (2008)CrossRefGoogle Scholar
  6. 6.
    N. Serpone, A.V. Emeline, J. Phys. Chem. Lett. 3, 673 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Nozik, Appl. Phys. Lett. 96, 150 (1976)CrossRefGoogle Scholar
  8. 8.
    J. Oh, T.G. Deutsch, H.C. Yuan, H.M. Branz, Energy Environ. Sci. 4, 1690 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, M. Grätzel, Energy Environ. Sci. 5, 8673 (2012)CrossRefGoogle Scholar
  11. 11.
    S.D. Tilley, M. Schreier, J. Azevedo, M. Stefik, M. Grätzel, Adv. Funct. Mater. 24, 303 (2014)CrossRefGoogle Scholar
  12. 12.
    C.Y. Lin, Y.H. Lai, D. Mersch, E. Reisner, Chem. Sci. 3, 3482 (2012)CrossRefGoogle Scholar
  13. 13.
    N.K. Awad, E.A. Ashour, N.K. Allam, J Renew Sustainable Energy 6, 022702 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Tang, M.A. Matin, H. Kang, S. Sudhakar, L. Chen, M.M. Al-Jassim, Y. Yan, J. Electron. Mater. 40, 3062 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6, 511 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, L. Gong, J. Chen, P. Liu, Y. Tong, Electrochim. Acta 62, 1 (2012)CrossRefGoogle Scholar
  17. 17.
    T.M. McCormick, B.D. Calitree, A. Orchard, N.D. Kraut, F.V. Bright, M.R. Detty, R. Eisenberg, J. Am. Chem. Soc. 132, 15480 (2010)CrossRefGoogle Scholar
  18. 18.
    C.A.N. Fernando, L.L.A. De Silva, R.M. Mehra, K. Takahashi, Semicond. Sci. Technol. 16, 433 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Kay, I. Cesar, M. Grätzel, J. Am. Chem. Soc. 128, 15714 (2006)CrossRefGoogle Scholar
  20. 20.
    M.G. Walter, E.L. Warren, J.R. Mckone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446 (2010)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, P. Wang, J. Mater. Chem. 22, 2456 (2012)CrossRefGoogle Scholar
  22. 22.
    I. Cesar, K. Sivula, A. Kay, R. Zborik, M. Grätzel, J. Phys. Chem. C 113, 772 (2009)CrossRefGoogle Scholar
  23. 23.
    W. Schockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)CrossRefGoogle Scholar
  24. 24.
    T. Sjodin, H. Petek, H.L. Dai, Phys. Rev. Lett. 81, 5664 (1998)CrossRefGoogle Scholar
  25. 25.
    S. Cattarin, L.M. Peter, J. Phys. Chem. B 101, 3961 (1997)CrossRefGoogle Scholar
  26. 26.
    N.P. Dasgupta, P. Yang, Front. Phys. 8, 1 (2013)CrossRefGoogle Scholar
  27. 27.
    U. Sim, H.Y. Jeong, T.Y. Yang, T.N. Ki, J. Mater. Chem. A 1, 5414 (2013)CrossRefGoogle Scholar
  28. 28.
    M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Nat. Mater. 9, 239 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Jia, H. Zhang, Y. Qiu, L. Wang, Y. Wang, L. Hu, Appl. Surf. Sci. 292, 86 (2014)CrossRefGoogle Scholar
  30. 30.
    J.Y. Jung, M.J. Choi, K. Zhou, X. Li, S.W. Jee, H.D. Um, M.J. Park, K.T. Park, J.H. Bang, J.H. Lee, J. Mater. Chem. A 2, 833 (2014)CrossRefGoogle Scholar
  31. 31.
    X.Q. Bao, R. Ferreira, E. Paz, D.C. Leitao, A. Silva, S. Cardoso, P.P. Freitas, L. Liu, Nano 6, 2097 (2014)Google Scholar
  32. 32.
    I. Oh, J. Kye, S. Hwang, Nano Lett. 12, 298 (2012)CrossRefGoogle Scholar
  33. 33.
    X. Ao, X. Tong, D.S. Kim, L. Zhang, M. Knez, F. Müller, S. He, V. Schmidt, Appl. Phys. Lett. 101, 111901 (2012)CrossRefGoogle Scholar
  34. 34.
    E.L. Warren, S.W. Boettcher, J.R. McKone, N.S. Lewis, in Proceeding of SPIE7770, Fifth Conference on Solar Hydrogen and Nanotechnology ed. by H. Idriss, H. Wang (Wiley, California, 2010)Google Scholar
  35. 35.
    J. Ji, H. Zhang, Y. Qiu, Y. Wang, Y. Luo, L. Hu, J. Mater. Sci. Mater. Electron. 24, 4433 (2013)CrossRefGoogle Scholar
  36. 36.
    N.P. Dasgupta, C. Liu, S. Andrews, F.B. Prinz, P. Yang, J. Am. Chem. Soc. 135, 12932 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Kye, M. Shin, B. Lim, J.W. Jang, I. Oh, S. Hwang, ACS Nano 7, 6017 (2013)CrossRefGoogle Scholar
  38. 38.
    B. Segar, A.B. Laursen, P.C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I. Chorkendorff, Angew. Chem. 124, 9262 (2012)CrossRefGoogle Scholar
  39. 39.
    Y. Hou, B.L. Abrams, P.C.K. Vesborg, M.K. Björketun, K. Herbst, L. Bech, A.M. Setti, C.D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J.K. Norskov, I. Chorkendorf, Nat. Mater. 10, 434 (2011)CrossRefGoogle Scholar
  40. 40.
    Z. Xiong, M. Zheng, S. Liu, S. Ma, W. Shen, Nanotechnology 24, 265402 (2013)CrossRefGoogle Scholar
  41. 41.
    Z. Huang, P. Zhong, C. Wang, X. Zhang, C. Zhang, ACS Appl. Mater. Interfaces 5, 1961 (2013)CrossRefGoogle Scholar
  42. 42.
    P.G. Neudeck, in The VLSI Handbook, ed. by W.K. Chen (CRC Press & IEEE Press, Boca Raton, 1999) p. 6–1Google Scholar
  43. 43.
    M. Kato, T. Yasuda, K. Miyake, M. Ichimura, T. Hatayama, Int. J. Hydrog. Energy 39, 4845 (2014)CrossRefGoogle Scholar
  44. 44.
    J.Y. Hao, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, Int J Hydrog Energy 37, 15038 (2012)CrossRefGoogle Scholar
  45. 45.
    J.Y. Hao, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, Catal. Today 212, 220 (2013)CrossRefGoogle Scholar
  46. 46.
    Q.B. Ma, B. Kaiser, W. Jaegermann, J. Power Sources 253, 41 (2014)CrossRefGoogle Scholar
  47. 47.
    Y. Nariki, Y. Inoue, K. Tanaka, J. Mater. Sci. 25, 3101 (1990)CrossRefGoogle Scholar
  48. 48.
    X. Deng, E.A. Schiff, in Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus (Wiley, Chichester, 2003), p. 504Google Scholar
  49. 49.
    J.I. Pankove, D.E. Carlson, Ann. Rev. Mater. Sci. 10, 43 (1980)CrossRefGoogle Scholar
  50. 50.
    Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, J. Poortmans, AIP Adv. 4, 057122–057121 (2014)CrossRefGoogle Scholar
  51. 51.
    D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch, Phys. Rev. Lett. 81, 2803 (1998)CrossRefGoogle Scholar
  52. 52.
    H. Mannsperger, S. Kalbitzer, Appl. Phys. A Mater. Sci. Process. 41, 253 (1986)CrossRefGoogle Scholar
  53. 53.
    Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, Y. Hamakawa, J. Appl. Phys. 53, 5273 (1982)CrossRefGoogle Scholar
  54. 54.
    C.R. Wronski, J.M. Pearce, R.J. Koval, A.S. Ferlauto, R.W. Collins, Progress in amorphous silicon based solar cell technology. Paper presented at the world climate & energy event. Rio 67, 6–11 (2002)Google Scholar
  55. 55.
    H. Zhang, S. Huang, G. Conibeer, Energy Procedia 22, 10 (2012)CrossRefGoogle Scholar
  56. 56.
    A. Madan, P.G. Le Comber, W.E. Spear, J. Non-cryst, Soldiers 20, 239 (1976)Google Scholar
  57. 57.
    J. Geissbühler, S. De Wolf, B. Demaurex, J.P. Seif, D.T.L. Alexander, L. Barraud, C. Ballif, Appl. Phys. Lett. 102, 231604 (2013)CrossRefGoogle Scholar
  58. 58.
    A. Kolodziej, Opto-electron. Revue 12, 21 (2004)Google Scholar
  59. 59.
    T. Shimizu, Jap J App Phys 43, 3257 (2004)CrossRefGoogle Scholar
  60. 60.
    N. Ishii, M. Kumeda, T. Shimizu, Jpn. J. Appl. Phys. 24, L244 (1981)CrossRefGoogle Scholar
  61. 61.
    T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, T. Hirao, Appl. Phys. Lett. 68, 2380 (1996)CrossRefGoogle Scholar
  62. 62.
    D. Adler, Sol. Cell 9, 133 (1983)Google Scholar
  63. 63.
    D. Adler, J. Phys, Collogues 42, C4–C3 (1981)Google Scholar
  64. 64.
    R.A. Street, N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975)CrossRefGoogle Scholar
  65. 65.
    Q. Zhang, M. Kumeda, T. Shimizu, Jpn. J. Appl. Phys. 32, L371 (1993)CrossRefGoogle Scholar
  66. 66.
    H.M. Branz HM, Phys. Rev. B 42, 7420 (1990)CrossRefGoogle Scholar
  67. 67.
    H.M. Branz, Sol. Energy Mater. Sol. Cells 78, 425 (2003)CrossRefGoogle Scholar
  68. 68.
    H.M. Branz, Phys. Rev. B 59, 5498 (1999)CrossRefGoogle Scholar
  69. 69.
    H.R. Biswas, B.C. Pan, Sol. Energy Mater. Sol. Cells 78, 447 (2003)CrossRefGoogle Scholar
  70. 70.
    S.T. Pantelides, Phys. Rev. Lett. 57, 2979 (1986)CrossRefGoogle Scholar
  71. 71.
    T. Shimizu, R. Durny, M. Kumeda. in Materials Research Society Symposium Proceedings, ed. by M. Hack, A. Matsuda, E.A. Schiff, R. Schropp, S. Wagner MRS Spring Meeting Symposium A, California, April 1996 (Cambridge University Press, Cambridge, 1996) p. 553Google Scholar
  72. 72.
    T. Shimizu, M. Kumeda, Jpn. J. Appl. Phys. 38, L911 (1999)CrossRefGoogle Scholar
  73. 73.
    F. Kohler, T. Zimmermann, S. Muthmann, A. Gordijn, R. Carius, IEEE J Photovolt 4, 4 (2014)CrossRefGoogle Scholar
  74. 74.
    D.E. Carlson, Appl. Phys. A Mater. Sci. Process. 41, 305 (1986)CrossRefGoogle Scholar
  75. 75.
    M. Fehr, A. Schnegg, B. Rech, O. Astakhov, F. Finger, R. Bittl, C. Teutloff, K. Lips, Phys. Rev. Lett. 112, 066403–066401 (2014)CrossRefGoogle Scholar
  76. 76.
    J.H. Yoon, J. Appl. Phys. 74, 1838 (1993)CrossRefGoogle Scholar
  77. 77.
    F. Zhu, J. Hu, I. Matulionis, T. Deutsch, N. Gaillard, A. Kunrath, E. Miller, A. Madan, Philos. Mag. 89, 2723 (2009)CrossRefGoogle Scholar
  78. 78.
    Y. Lin, C. Battaglia, M. Boccard, M. Hettick, Z. Yu, C. Ballif, J.W. Ager, A. Javey, Nano Lett. 13, 5615 (2013)CrossRefGoogle Scholar
  79. 79.
    J. Ziegler, B. Kaiser, W. Jaegermann, F. Urbain, J.P. Becker, V. Smirnov, F. Finger, Chem. Phys. Chem. 15, 4026 (2014)CrossRefGoogle Scholar
  80. 80.
    F. Urbain, V. Smirnov, J.P. Becker, U. Rau, F. Finger, j. Ziegler, B. Kaiser, W. Jaegermann, J. Mater. Res. 29, 2605 (2014)CrossRefGoogle Scholar
  81. 81.
    B. Kumar, J.M. Smieja, C.P. Kubiak, J. Phys. Chem. C 114, 14220 (2010)CrossRefGoogle Scholar
  82. 82.
    K. Alenezi, S.K. Ibrahim, P. Li, C.J. Pickett, Chem. Eur. J. 19, 13522 (2013)CrossRefGoogle Scholar
  83. 83.
    T.J. LaTempa, S. Rani, N. Bao, C.A. Grimes, Nano 4, 2245 (2012)Google Scholar
  84. 84.
    R. Liu, G. Yuan, C.L. Joe, T.E. Lightburn, K.L. Tan, D. Wang, Angew. Chem. 124, 6813 (2012)CrossRefGoogle Scholar
  85. 85.
    R. Liu, C. Stephani, J.J. Han, K.L. Tan, D. Wang, Angew. Chem. 125, 4319 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmad M. Mohamed
    • 1
  • Basamat S. Shaheen
    • 1
  • Aya M. Mohamed
    • 1
  • Ahmad W. Amer
    • 1
  • Nageh K. Allam
    • 1
  1. 1.Energy Materials Laboratory (EML), School of Sciences and EngineeringThe American University in CairoNew CairoEgypt

Personalised recommendations