Organic–Inorganic Hybrid Silicon Solar



The real challenge of solar cells can be summarized to reduce the cost while increasing the conversion efficiencies. Organic–inorganic hybrid silicon solar cell is a newly developed type of solar cells which is expected to realize above requirement. It can inherit the high efficiency and reliability of the silicon material and the flexibility, light weight, and affordability of the organic materials. In this new type of devices, an organic layer is generally spread on the silicon to form the heterojunction, where the silicon wafer is adopted as the optical absorber. To reduce cost, ultrathin silicon wafer should be the best choice if only it can absorb enough sunlight to support the high efficiency. Therefore, light-trapping nanostructures, like silicon pyramid, nanowire, nanocone, and silver nanoparticle, have been widely utilized to improve the light absorption. As a consequence, the preparation of ultrathin silicon wafer and various silicon nanostructures is an important fundamental for the organic–inorganic hybrid silicon solar cells. In addition to form heterojunction with silicon, the other function of the polymer layer is to transport holes. So, the hole-transporting ability is one of the main criteria for choosing the polymer. In these days, PEDOT:PSS is most widely used and thought to be the best choice. Because silicon is inorganic, it is a challenge to form a perfect interface contact with the PEDOT:PSS; thus, there always exists abundance of defect structures and defect states on the organic–inorganic interface. These interface defects are another limitation for the efficiency of the organic–inorganic hybrid silicon solar cells. So, fabrication technology is another very important aspect to ensure the high efficiency of such type of hybrid solar cells. It includes modifying the surface wettability of silicon to improve the junction quality and importing effective passivation for the organic–inorganic interface to reduce the recombination centers. Considering these factors, in this chapter, firstly, some recent works on the preparation of crystal silicon membrane and several silicon nanostructures have been summarized by us; then, the basic process, especially the passivation technologies, in fabricating the heterojunction is given. We hope this summary is helpful for the future development of organic–inorganic hybrid silicon solar cells.



This work is supported partially by National High-Tech R&D Program of China (863 Program, No. 2015AA034601), National Natural Science Foundation of China (Grant nos. 91333122, 51372082, 51402106, and 11504107), PhD Programs Foundation of Ministry of Education of China (Grant no. 20130036110012), Par-Eu Scholars Program, Beijing Municipal Commission of Science and Technology Project (Z161100002616039), and the Fundamental Research Funds for the Central Universities (2016JQ01, 2015ZZD03, 2015ZD07, 2017ZZD02).


  1. 1.
    P.C. Yu, C.Y. Tsai, J.K. Chang, C.C. Lai, P.H. Chen, Y.C. Lai, P.T. Tsai, M.C. Li, H.T. Pan, Y.Y. Huang, C.I. Wu, Y.L. Chueh, S.W. Chen, C.H. Du, S.F. Horng, H.F. Meng, ACS Nano 7, 10780 (2013)CrossRefGoogle Scholar
  2. 2.
    F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, B. Sun, ACS Appl. Mater. Interfaces 5, 4678 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Sharma, P.R. Pudasaini, F. Ruiz-Zepeda, D. Elam, A.A. Ayon, ACS Appl. Mater. Interfaces 6, 4356 (2014)CrossRefGoogle Scholar
  4. 4.
    J. He, P.Q. Gao, M.D. Liao, X. Yang, Z.Q. Ying, S.Q. Zhou, J.C. Ye, Y. Cui, ACS Nano 9, 6522 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Li, P. Fu, R. Li, M. Li, Y. Luo, D. Song, Appl. Surf. Sci. 366, 494 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, F. Zu, S.T. Lee, L. Liao, N. Zhao, B. Sun, Adv. Energy Mater. 4, 2195 (2014)Google Scholar
  7. 7.
    W. Qiu, Dissertation, SiChuan Normal University, (2014)Google Scholar
  8. 8.
    F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, J. Solid State Chem. 196, 596 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Huang, T. Yen, MRS Proceedings, 1302, mrsf10–1302-w1309–1304, (2011)Google Scholar
  10. 10.
    C.Y. Chen, C.S. Wu, C.J. Chou, T.J. Yen, Adv. Mater. 20, 3811 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Li, Y. Liu, X. Zhao, Z. Lin, C.-P. Wong, ACS Appl. Mater. Interfaces 6, 575 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gosele, J. Phys. Chem. C 114, 10683 (2010)CrossRefGoogle Scholar
  13. 13.
    F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, Appl. Surf. Sci. 273, 107 (2013)CrossRefGoogle Scholar
  14. 14.
    S. An, S.G. Lee, S.G. Park, E.H. Lee, O. Beom-Hoan, Sensor. Actuat. a-Phys. 209, 124 (2014)CrossRefGoogle Scholar
  15. 15.
    K.P. Rola, I. Zubel, J. Micromech. Microeng. 21, 115026 (2011)CrossRefGoogle Scholar
  16. 16.
    I. Zubel, M. Kramkowska, Sensor. Actuat. a-Phys. 101, 255 (2002)CrossRefGoogle Scholar
  17. 17.
    I. Zubel, K. Rola, M. Kramkowska, Sensor. Actuat. a-Phys. 171, 436 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Splinter, J. Stürmann, W. Benecke, Mater. Sci. Eng. C 15, 109 (2001)CrossRefGoogle Scholar
  19. 19.
    K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, S. Ito, Sensor. Actuat. a-Phys. 73, 122 (1999)CrossRefGoogle Scholar
  20. 20.
    B. Fan, F. Peng-Fei, C. Peng, H. Rui, L. Rui-Ke, Z. Zhi-Rong, Y. Hang, Z. Yan, S. Dan-Dan, L. Ying-Feng, J. Infrared Millim. W. 34, 471 (2015)Google Scholar
  21. 21.
    K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Small 1, 1062 (2005)CrossRefGoogle Scholar
  22. 22.
    Y. Li, L. Yue, Y. Luo, W. Liu, M. Li, Opt. Express 24, A1075 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Li, M. Li, R. Li, P. Fu, T. Wang, Y. Luo, J.M. Mbengue, M. Trevor, Sci. Rep-Uk 6, 24847 (2016)CrossRefGoogle Scholar
  24. 24.
    I. Zardo, S. Conesa-Boj, S. Estradé, L. Yu, F. Peiro, P.R.i. Cabarrocas, J. Morante, J. Arbiol, A.F.i. Morral, Appl. Phys. A Mater 100, 287 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Hofmann, C. Ducati, R. Neill, S. Piscanec, A. Ferrari, J. Geng, R. Dunin-Borkowski, J. Robertson, J. Appl. Phys. 94, 6005 (2003)CrossRefGoogle Scholar
  26. 26.
    D. Ma, C. Lee, F. Au, S. Tong, S. Lee, Science 299, 1874 (2003)CrossRefGoogle Scholar
  27. 27.
    J.R. Maiolo, B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, H.A. Atwater, N.S. Lewis, J. Am. Chem. Soc. 129, 12346 (2007)CrossRefGoogle Scholar
  28. 28.
    Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)CrossRefGoogle Scholar
  29. 29.
    D. Kwak, H. Cho, W.-C. Yang, Phys. E. 37, 153 (2007)CrossRefGoogle Scholar
  30. 30.
    J. Bhardwaj, H. Ashraf, A. McQuarrie, Proc. Symp. Microstructures and microfabricated systems, ECS, 1–13 (1997)Google Scholar
  31. 31.
    R.M. Ng, T. Wang, F. Liu, X. Zuo, J. He, M. Chan, Elect. Device Lett. Ie 30, 520 (2009)CrossRefGoogle Scholar
  32. 32.
    K.-Q. Peng, Y.-J. Yan, S.-P. Gao, J. Zhu, Adv. Mater. 14, 1164 (2002)CrossRefGoogle Scholar
  33. 33.
    K.Q. Peng, Z.P. Huang, J. Zhu, Adv. Mater. 16, 73 (2004)CrossRefGoogle Scholar
  34. 34.
    K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, J. Zhu, Adv. Funct. Mater. 16, 387 (2006)CrossRefGoogle Scholar
  35. 35.
    H. Han, Z. Huang, W. Lee, Nano Today 9, 271 (2014)CrossRefGoogle Scholar
  36. 36.
    Z. Huang, N. Geyer, L. Liu, M. Li, P. Zhong, Nanotechnology 21, 465301 (2010)CrossRefGoogle Scholar
  37. 37.
    W. Chern, K. Hsu, I.S. Chun, B.P.D. Azeredo, N. Ahmed, K.-H. Kim, J.M. Zuo, N. Fang, P. Ferreira, X. Li, Nano Lett. 10, 1582 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Tang, J. Shi, L. Zhou, Z. Ma, Nano-Micro. Lett. 3, 129 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Huang, S.Y. Chiam, H.H. Tan, S. Wang, W.K. Chim, Chem. Mater. 22, 4111 (2010)CrossRefGoogle Scholar
  40. 40.
    X. Geng, M. Li, L. Zhao, P.W. Bohn, J. Electron. Mater. 40, 2480 (2011)CrossRefGoogle Scholar
  41. 41.
    Y.F. Li, M.C. Li, D.D. Song, H. Liu, B. Jiang, F. Bai, L.H. Chu, Nano Energy 11, 756 (2015)CrossRefGoogle Scholar
  42. 42.
    J. Yeom, D. Ratchford, C.R. Field, T.H. Brintlinger, P.E. Pehrsson, Adv. Funct. Mater. 24, 106 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Su, L. Lin, Z. Li, J. Feng, Z. Zhang, Nanoscale Res. Lett. 8(1), 405 (2013)CrossRefGoogle Scholar
  44. 44.
    Z. Huang, H. Fang, J. Zhu, Adv. Mater. 19, 744 (2007)CrossRefGoogle Scholar
  45. 45.
    Y.F. Li, M.C. Li, R.K. Li, P.F. Fu, B. Jiang, D.D. Song, C. Shen, Y. Zhao, R. Huang, Opt. Commun. 355, 6 (2015)CrossRefGoogle Scholar
  46. 46.
    F. Leonard, A.A. Talin, Phys. Rev. Lett. 97, 163 (2006)CrossRefGoogle Scholar
  47. 47.
    F. Bai, Dissertation, Harbin institute of Technology, (2014)Google Scholar
  48. 48.
    H.D. Um, J.Y. Jung, H.S. Seo, K.T. Park, S.W. Jee, S.A. Moiz, J.H. Lee, Jpn. J. Appl. Phys. 49, 04DN02 (2010)CrossRefGoogle Scholar
  49. 49.
    Y.F. Li, M.C. Li, R.K. Li, P.F. Fu, L.H. Chu, D.D. Song, Appl. Phys. Lett. 106, 091908 (2015)CrossRefGoogle Scholar
  50. 50.
    E. Garnett, P.D. Yang, Nano Lett. 10, 1082 (2010)CrossRefGoogle Scholar
  51. 51.
    J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, Y. Cui, ACS Nano 9, 6522 (2015)CrossRefGoogle Scholar
  52. 52.
    Y. Cho, M. Gwon, H.-H. Park, J. Kim, D.-W. Kim, Nanoscale 6, 9568 (2014)CrossRefGoogle Scholar
  53. 53.
    Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, Y. Zhao, Sci. Rep-Uk 5, 11532 (2015)CrossRefGoogle Scholar
  54. 54.
    H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, C.-Y. Wong, J. Mater. Chem. A 1, 9942 (2013)CrossRefGoogle Scholar
  55. 55.
    F. Bai, M. Li, R. Huang, Y. Li, M. Trevor, K.P. Musselman, RSC Adv. 4, 1794 (2014)CrossRefGoogle Scholar
  56. 56.
    T. Ohmi, J. Electrochem. Soc. 143, 2957 (1996)CrossRefGoogle Scholar
  57. 57.
    H. Jin, C. Xingbi, Y. Chuanren, X. Wang, Semicond. Sci. Technol. 5, 006 (1999)Google Scholar
  58. 58.
    Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, H. Shirai, Appl. Phys. Lett. 100, 183901 (2012)CrossRefGoogle Scholar
  59. 59.
    Z. Wang, H. Yang, X. Xi, Q. Qiao, J. JI, G. Li, J. Funct. Mater. 38, 393 (2007)Google Scholar
  60. 60.
    X. Shen, B. Sun, D. Liu, S.-T. Lee, J. Am. Chem. Soc. 133, 19408 (2011)CrossRefGoogle Scholar
  61. 61.
    Y. Kim, A.M. Ballantyne, J. Nelson, D.D. Bradley, Org. Electron. 10, 205 (2009)CrossRefGoogle Scholar
  62. 62.
    T.-R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lin, C.-Y. Chao, J. Mater. Chem. C 3, 3760 (2015)CrossRefGoogle Scholar
  63. 63.
    Q.-L. Meng, F. Li, X. Xi, W. Qian, L. Que, J. JI, Y. Ding, G. Li, J. Artificial Crystal 39, 670 (2010)Google Scholar
  64. 64.
    A.M. Nardes, M. Kemerink, M. De Kok, E. Vinken, K. Maturova, R. Janssen, Org. Electron. 9, 727 (2008)CrossRefGoogle Scholar
  65. 65.
    J. Sheng, K. Fan, D. Wang, C. Han, J. Fang, P. Gao, J. Ye, ACS Appl. Mater. Interfaces 6, 16027 (2014)CrossRefGoogle Scholar
  66. 66.
    P. Pudasaini, A. Ayon, J. Phys. Conf. Ser. 476, 012140 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power UniversityBeijingChina
  2. 2.Chongqing Materials Research InstituteChongqingChina

Personalised recommendations