Advertisement

Silicon Nanocrystal-Based Organic/Inorganic Hybrid Solar Cells

Chapter

Abstract

Comparing to bulk silicon, silicon nanocrystals (Si NCs) possess particularly interesting properties and have further broadened applications in optics, microelectronics, photovoltaics, and other fields. In this chapter, novel fabrication process of Si NCs by using a plasma will be introduced firstly; next, some basic properties of resulted Si NCs, such as crystallinity, optical, and electrical properties, have been studied extensively; then, its application in organic/inorganic hybrid solar cells has been explored; structure design, device fabrication, and performance characterization of Si NC-based organic/inorganic hybrid solar cells have been described finally. In addition, effects of Si NCs on device performance are also discussed extensively.

Notes

Acknowledgments

The authors would thank all contributors to the publication, who have been important for this work. This work was financially supported by the National Natural Science Foundation of China (No. 61504069), the 111 Project of China (B16027), and Grant-in-Aid for Scientific Research (b) of Japan (No. 26289045).

References

  1. 1.
    W.K. Leutwyler, S.L. Bürgi, H. Burgl, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)CrossRefGoogle Scholar
  2. 2.
    A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100(31), 13226–13239 (1996)CrossRefGoogle Scholar
  3. 3.
    F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33(11), 773–780 (2000)CrossRefGoogle Scholar
  4. 4.
    W.E. Buhro, V.L. Colvin, Semiconductor nanocrystals: shape matters. Nat. Mater. 2(3), 138–139 (2003)CrossRefGoogle Scholar
  5. 5.
    D.V. Melnikov, J.R. Chelikowsky, Quantum confinement in phosphorus-doped silicon nanocrystals. Phys. Rev. Lett. 92(4), 046802 (2004)CrossRefGoogle Scholar
  6. 6.
    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462–465 (2005)CrossRefGoogle Scholar
  7. 7.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)CrossRefGoogle Scholar
  8. 8.
    V. Colvin, M. Schlamp, A. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354–357 (1994)CrossRefGoogle Scholar
  9. 9.
    M. Schlamp, X. Peng, A. Alivisatos, Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82(11), 5837–5842 (1997)CrossRefGoogle Scholar
  10. 10.
    O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062), 1530–1533 (2011)CrossRefGoogle Scholar
  11. 11.
    J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, A.J. Nozik, Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8(10), 3488–3492 (2008)CrossRefGoogle Scholar
  12. 12.
    B.A. Ridley, B. Nivi, J.M. Jacobson, All-inorganic field effect transistors fabricated by printing. Science 286(5440), 746–749 (1999)CrossRefGoogle Scholar
  13. 13.
    J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, T. Nann, Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv. Mater. 20(21), 4068–4073 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412–G417 (2003)CrossRefGoogle Scholar
  15. 15.
    R. Malakooti, L. Cademartiri, Y. Akçakir, S. Petrov, A. Migliori, G.A. Ozin, Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible films. Adv. Mater. 18(16), 2189–2194 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95(2), 525–532 (1991)CrossRefGoogle Scholar
  17. 17.
    M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)CrossRefGoogle Scholar
  18. 18.
    L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5(4), 655–659 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, F. Rocca, Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 101(11), 113510 (2007)CrossRefGoogle Scholar
  20. 20.
    R.K. Baldwin, K.A. Pettigrew, J.C. Garno, P.P. Power, G.-y. Liu, S.M. Kauzlarich, Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124(7), 1150–1151 (2002)CrossRefGoogle Scholar
  21. 21.
    K. Littau, P. Szajowski, A. Muller, A. Kortan, L. Brus, A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 97(6), 1224–1230 (1993)CrossRefGoogle Scholar
  22. 22.
    R.J. Walters, G.I. Bourianoff, H.A. Atwater, Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4(2), 143–146 (2005)CrossRefGoogle Scholar
  23. 23.
    Z. Ding, B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel, A.J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571), 1293–1297 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Ostraat, J. De Blauwe, M. Green, L. Bell, M. Brongersma, J. Casperson, R. Flagan, H. Atwater, Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl. Phys. Lett. 79(3), 433–435 (2001)CrossRefGoogle Scholar
  25. 25.
    T. Lu, M. Alexe, R. Scholz, V. Talelaev, M. Zacharias, Multilevel charge storage in silicon nanocrystal multilayers. Appl. Phys. Lett. 87(20), 202110 (2005)CrossRefGoogle Scholar
  26. 26.
    C.-Y. Liu, Z.C. Holman, U.R. Kortshagen, Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett. 9(1), 449–452 (2008)CrossRefGoogle Scholar
  27. 27.
    G. Conibeer, M. Green, E.-C. Cho, D. König, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516(20), 6748–6756 (2008)CrossRefGoogle Scholar
  28. 28.
    M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7(8), 2506–2512 (2007)CrossRefGoogle Scholar
  29. 29.
    K.-Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes, High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11(5), 1952–1956 (2011)CrossRefGoogle Scholar
  30. 30.
    V. Svrcek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media. J. Phys. Chem. C 115(12), 5084–5093 (2011)CrossRefGoogle Scholar
  31. 31.
    X. Pi, Q. Li, D. Li, D. Yang, Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011)CrossRefGoogle Scholar
  32. 32.
    R. Gresback, T. Nozaki, K. Okazaki, Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma. Nanotechnology 22(30), 305605 (2011)CrossRefGoogle Scholar
  33. 33.
    N. Shirahata, T. Hasegawa, Y. Sakka, T. Tsuruoka, Size-tunable UV-luminescent silicon nanocrystals. Small 6(8), 915–921 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Stegner, R. Pereira, K. Klein, R. Lechner, R. Dietmueller, M. Brandt, M. Stutzmann, H. Wiggers, Electronic transport in phosphorus-doped silicon nanocrystal networks. Phys. Rev. Lett. 100(2), 026803 (2008)CrossRefGoogle Scholar
  35. 35.
    V. Švrček, T. Sasaki, Y. Shimizu, N. Koshizaki, Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Appl. Phys. Lett. 89(21), 213113 (2006)CrossRefGoogle Scholar
  36. 36.
    Y. Ding, R. Yamada, R. Gresback, S. Zhou, X. Pi, T. Nozaki, A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor. J. Phys. D. Appl. Phys. 47(48), 485202 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Ding, R. Gresback, Q. Liu, S. Zhou, X. Pi, T. Nozaki, Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance. Nano Energy 9, 25–31 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Ding, R. Gresback, R. Yamada, K. Okazaki, T. Nozaki, Hybrid silicon nanocrystal/poly (3-hexylthiophene-2, 5-diyl) solar cells from a chlorinated silicon precursor. Jpn. J. Appl. Phys. 52(11S), 11NM04 (2013)CrossRefGoogle Scholar
  39. 39.
    L.M. Wheeler, N.R. Neale, T. Chen, U.R. Kortshagen, Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals. Nat. Commun. 4, 2197 (2013)Google Scholar
  40. 40.
    S. Rivillon, F. Amy, Y.J. Chabal, M.M. Frank, Gas phase chlorination of hydrogen-passivated silicon surfaces. Appl. Phys. Lett. 85, 2583 (2004)CrossRefGoogle Scholar
  41. 41.
    M. Brodsky, M. Cardona, J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B 16(8), 3556 (1977)CrossRefGoogle Scholar
  42. 42.
    Y. Ding, D. He, H. Shirai, Deposition of low dielectric constant SiOC films by using an atmospheric pressure microplasma jet. J. Phys. D. Appl. Phys. 42(12), 125503 (2009)CrossRefGoogle Scholar
  43. 43.
    A. Grill, D.A. Neumayer, Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. J. Appl. Phys. 94(10), 6697–6707 (2003)CrossRefGoogle Scholar
  44. 44.
    N. Benissad, K. Aumaille, A. Granier, A. Goullet, Structure and properties of silicon oxide films deposited in a dual microwave-rf plasma reactor. Thin Solid Films 384(2), 230–235 (2001)CrossRefGoogle Scholar
  45. 45.
    M. Wolkin, J. Jorne, P. Fauchet, G. Allan, C. Delerue, Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82(1), 197 (1999)CrossRefGoogle Scholar
  46. 46.
    Y. Ding, M. Sugaya, Q. Liu, S. Zhou, T. Nozaki, Oxygen passivation of silicon nanocrystals: influences on trap states, electron mobility, and hybrid solar cell performance. Nano Energy 10, 322–328 (2014)CrossRefGoogle Scholar
  47. 47.
    G. Higashi, Y. Chabal, G. Trucks, K. Raghavachari, Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 56(7), 656–658 (1990)CrossRefGoogle Scholar
  48. 48.
    R. Gresback, Y. Murakami, Y. Ding, R. Yamada, K. Okazaki, T. Nozaki, Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition. Langmuir 29(6), 1802–1807 (2013)CrossRefGoogle Scholar
  49. 49.
    Y. Ding, S. Zhou, F.B. Juangsa, M. Sugaya, Y. Asano, X. Zhang, Y. Zhao, T. Nozaki, Optical, electrical, and photovoltaic properties of silicon nanoparticles with different crystallinities. Appl. Phys. Lett. 107(23), 233108 (2015)CrossRefGoogle Scholar
  50. 50.
    D. Selmarten, M. Jones, G. Rumbles, P. Yu, J. Nedeljkovic, S. Shaheen, Quenching of semiconductor quantum dot photoluminescence by a π-conjugated polymer. J. Phys. Chem. B 109(33), 15927–15932 (2005)CrossRefGoogle Scholar
  51. 51.
    M. Sykora, L. Mangolini, R.D. Schaller, U. Kortshagen, D. Jurbergs, V.I. Klimov, Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. Phys. Rev. Lett. 100(6), 067401 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. Lebedev, G. Van Tendeloo, V.V. Moshchalkov, Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3(3), 174–178 (2008)CrossRefGoogle Scholar
  53. 53.
    S.W. Lin, D.H. Chen, Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5(1), 72–76 (2009)CrossRefGoogle Scholar
  54. 54.
    Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G. Hu, The structure and properties of nanosize crystalline silicon films. J. Appl. Phys. 75(2), 797–803 (1994)CrossRefGoogle Scholar
  55. 55.
    M. Wright, A. Uddin, Organic—inorganic hybrid solar cells: a comparative review. Sol. Energy Mater. Sol. Cells 107, 87–111 (2012)CrossRefGoogle Scholar
  56. 56.
    J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, L. Schmidt-Mende, Nanostructured organic and hybrid solar cells. Adv. Mater. 23(16), 1810–1828 (2011)CrossRefGoogle Scholar
  57. 57.
    A. Salant, M. Shalom, Z. Tachan, S. Buhbut, A. Zaban, U. Banin, Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties. Nano Lett. 12(4), 2095–2100 (2012)CrossRefGoogle Scholar
  58. 58.
    S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, S. Gradecak, Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett. 11(9), 3998–4002 (2011)CrossRefGoogle Scholar
  59. 59.
    Z. Yang, A. Janmohamed, X. Lan, F.P. García de Arquer, O. Voznyy, E. Yassitepe, G.-H. Kim, Z. Ning, X. Gong, R. Comin, Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 15(11), 7539–7543 (2015)CrossRefGoogle Scholar
  60. 60.
    A. Abrusci, I.-K. Ding, M. Al-Hashimi, T. Segal-Peretz, M.D. McGehee, M. Heeney, G.L. Frey, H.J. Snaith, Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells. Energy Environ. Sci. 4(8), 3051–3058 (2011)CrossRefGoogle Scholar
  61. 61.
    J. Von Behren, T. Van Buuren, M. Zacharias, E. Chimowitz, P. Fauchet, Quantum confinement in nanoscale silicon: the correlation of size with bandgap and luminescence. Solid State Commun. 105(5), 317–322 (1998)CrossRefGoogle Scholar
  62. 62.
    H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16(1), 45–61 (2006)CrossRefGoogle Scholar
  63. 63.
    Z. Zhou, L. Brus, R. Friesner, Electronic structure and luminescence of 1.1-and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett. 3(2), 163–167 (2003)CrossRefGoogle Scholar
  64. 64.
    M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mat.-Deerfield Beach Then Weinheim 18(6), 789 (2006)CrossRefGoogle Scholar
  65. 65.
    P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol. Energy Mater. Sol. Cells 90(14), 2150–2158 (2006)CrossRefGoogle Scholar
  66. 66.
    H.-L. Yip, A.K.-Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5(3), 5994–6011 (2012)CrossRefGoogle Scholar
  67. 67.
    Y. Ding, R. Gresback, S. Zhou, X. Pi, T. Nozaki, Silicon nanocrystals synthesized using very high frequency non-thermal plasma and their application in photovoltaics. J. Phys. D. Appl. Phys. 48, 314011 (2015)CrossRefGoogle Scholar
  68. 68.
    P.W. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 19(12), 1551–1566 (2007)CrossRefGoogle Scholar
  69. 69.
    P. Cheng, Y. Li, X. Zhan, Efficient ternary blend polymer solar cells with indene-C 60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 7(6), 2005–2011 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Nankai University, College of Electronic Information and Optical EngineeringNankaiChina
  2. 2.Tokyo Institute of Technology, Department of Mechanical Sciences and EngineeringTokyoJapan

Personalised recommendations