Skip to main content

Optical Anisotropy and Compositional Ratio of Conductive Polymer PEDOT:PSS and Their Effect on Photovoltaic Performance of Crystalline Silicon/Organic Heterojunction Solar Cells

  • Chapter
  • First Online:
Advances in Silicon Solar Cells

Abstract

We demonstrate the optical anisotropy of a transparent conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and its effect on the photovoltaic performance of n-type crystalline silicon (n-Si)/PEDOT:PSS heterojunction solar cells. The depth profile of PEDOT/PSS compositional ratio and optical anisotropy depends on the type of polar solvent and/or external DC bias supplied to n-Si substrate during film deposition by spin coating (SC) and chemical mist deposition (CMD). N-Si/PEDOT:PSS heterojunction solar cells with higher PEDOT/PSS compositional ratio near the film surface exhibited better power conversion efficiency η of 12.5% (@2 × 2 cm2) without any light harvesting techniques. In this chapter, the correlation among the optical anisotropy, the depth profile of PEDOT/PSS compositional ratio in conductive polymer PEDOT:PSS, and the photovoltaic performance of n-Si/PEDOT:PSS heterojunction solar cells is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J. Cousins, D.D. Smith, H.C. Luan, J. Manning, T.D. Dennis, A. Waldhauer, K.E. Wilson, G. Harlrey, G.P. Muligan Gen III in Proceedings of the 35th IEE. Photovoltaic specialist conference, Honolulu, USA, p. 275–278 (2010)

    Google Scholar 

  2. K. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H. Sakata, M. Taguchi, E. Maruyama, Y. Nakamura In: Proceedings of the 26th European photovoltaic solar energy conference, Hamburg, Germany, p. 871 (2011)

    Google Scholar 

  3. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, Sol. Energy Mater. Sol. Cells 96, 032105 (2010)

    Google Scholar 

  4. Q. Wang, M.R. Page, E. Iwanicko, Y. Xu, L. Royabal, R. Bauer, B. To, H.–.C. Yuan, A. Duda, F. Hasioon, Y.F. Yan, D. Levi, D. Meier, H.M. Branz, T.H. Wang, Appl. Phys. Lett. 96, 013507 (2010)

    Article  Google Scholar 

  5. K. Masuko, IEEE J.Photovoltaics 4, 1433 (2014)

    Article  Google Scholar 

  6. N. Mingirulli, J. Haschke, R. Gogolin, R. Ferré, T. Schulze, J. Düsterholt, N.-P. Harder, L. Korte, R. Gogolin, R. Rech, Phys. Status Solidi RPL 5, 159 (2011)

    Article  Google Scholar 

  7. L. He, C. Jiang, H. Wang, D. Lai, Rusli, Appl. Phys. Lett. 100, 073503 (2012)

    Article  Google Scholar 

  8. I. Khatri, Z. Tang, Q. Liu, R. Ishikawa, K. Ueno, H. Shirai, Appl. Phys. Lett. 102, 063508 (2013)

    Article  Google Scholar 

  9. Z. Tang, Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, H. Shirai, Phys. Status Solidi C9, 2075 (2012)

    Article  Google Scholar 

  10. J.Y. Chen, M.-H. Yu, S.-F. Chang, K.W. Sun, Appl. Phys. Lett. 103, 133901 (2013)

    Article  Google Scholar 

  11. A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merkerm, K. Reuter, PEDOT -Principle and Applications of an Intrinsically Conductive Polymer (CRC Press, Taylor and Francis Group, New York, 2011)

    Google Scholar 

  12. Y. Xia, J. Ouyang, J. Mater. Chem. 21, 4297 (2011)

    Google Scholar 

  13. H. Okuzaki, M. Ishihara, S. Ashizawa, Synth. Met. 137, 947 (2003)

    Article  Google Scholar 

  14. D. Zielke, C. Niehaves, W. Lövenicj, A. Elschner, M. Hörteis, J. Schmidt, Ener Procedia 77, 331 (2015)

    Article  Google Scholar 

  15. S. Jäckle, M. Mattiza, M. Liebhaber, G. Bronstrup, M. Rommel, K. Lips, S. Christiansen, Sci. Rep. 13008 (2015)

    Google Scholar 

  16. D. Zielke, A. Pazidis, F. Wernet, J. Schmidt, Sol. Ener. Mater. & Sol. Cells 131, 110 (2014)

    Article  Google Scholar 

  17. Y. Xia, K. Sun, J. Ouyang, Adv. Mater. 24, 2436 (2012)

    Article  Google Scholar 

  18. N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahung, Y.-R. Jo, B.-J. Kim, K. Lee, Adv. Mater. 26(14), 2268–2272, 2109 (2014)

    Google Scholar 

  19. S. Mukher, R. Singh, S. Gopinathan, S. Murugan, S. Gawali, B. Saha, J. Biswas, S. Lodha, A. Kumar, ACS Appl. Mater. Interfaces 6(20), 17792–17803 (2014)

    Article  Google Scholar 

  20. L.A.A. Pettersson, F. Carlsson, O. Inagäs, H. Arwin, Thin Solid Films 313-314, 356 (1998)

    Article  Google Scholar 

  21. L.A.A. Pettersson, S. Ghosh, O. Inagäs, Org. Electron. 3, 143 (2002)

    Article  Google Scholar 

  22. Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, H. Shirai, Appl. Phys. Lett. 100, 183901 (2012)

    Article  Google Scholar 

  23. X. Crispin, F.L. Kakobsson, A. Crispin, P.C. Grim, P. Andersson, A. Volodin, C. van Hasendonck, N. Van der Auweraer, W.R. Salaneck, M. Berggren, Chem. Mater. 18, 4354 (2006)

    Article  Google Scholar 

  24. H. Okuzaki, Y. Harashina, Eur. Polym. J. 45, 256 (2009)

    Article  Google Scholar 

  25. T.J. Wang, Y.Q. Qi, J.K. Xu, X.J. Hu, P. Chen, Appl. Surf. Sci. 250, 188 (2005)

    Article  Google Scholar 

  26. H. Fujiwara, M. Kondo, Phys. Rev. B71, 075109 (2005)

    Article  Google Scholar 

  27. M. Yamashita, C. Otani, M. Shimizu, H. Okuzaki, Appl. Phys. Lett. 99, 143307 (2011)

    Article  Google Scholar 

  28. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51, 6243 (1980)

    Article  Google Scholar 

  29. J. Hossain, T. Ohki, K. Ichikawa, K. Fujiyama, K. Ueno, Y. Fujii, T. Hanajiri, H. Shirai, Jpn. J. Appl. Phys. 55, 061602 (2016)

    Article  Google Scholar 

  30. K. Fujita, T. Ishikawa, T. Tsutsumi, Jpn. J. Appl. Phys. 41, L70 (2002)

    Article  Google Scholar 

  31. X. Mo, T. Mizukoshi, A. Kobayashi, G. Chen, N. Tanigaki, H. Hiraga, Thin Solid Films 516, 1663 (2008)

    Article  Google Scholar 

  32. T. Fukuda, T. Suzuki, R. Kobayashi, Z. Honda, N. Kamata, Thin Solid Films 518, 575 (2009)

    Article  Google Scholar 

  33. T. Hiate, T. Ino, R. Ishikawa, K. Ueno, H. Shirai, Jpn. J. Appl. Phys. 51, 10NE30 (2012)

    Article  Google Scholar 

  34. Y. Kamada, T. Kahaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45, L857 (2006)

    Article  Google Scholar 

  35. J.-Q. Lu, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, S. Fujita, J. Cryst. Growth 299(1), 1–10 (2007)

    Google Scholar 

  36. Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Mater. Res. Soc. Proc. 957, K07–K27 (2007)

    Google Scholar 

  37. H. Nishinaka, T. Kawaharamura, S. Fujita, Jpn. J. Appl. Phys. 46, 6811 (2007)

    Article  Google Scholar 

  38. T. Ino, M. Ono, N. Miyauchi, Q. Liu, Z. Tang, R. Ishikawa, K. Ueno, H. Shirai, Jpn. J. Appl. Phys. 51, 061602 (2012)

    Article  Google Scholar 

  39. A. Uehara, The technical report in CHALLENGE Co. Ltd. (2010)

    Google Scholar 

  40. I. Khatri, T. Imamura, A. Uehara, R. Ishikawa, K. Ueno, H. Shirai, Phys. Status Solidi C 9, 2134 (2012)

    Article  Google Scholar 

  41. K. Shanmugasundaram, A study of the mist deposition and pattering of liquid precursor thin films, Doctor thesis in The Pennsylvania State University (2008)

    Google Scholar 

  42. T. Hiate, N. Miyauchi, Q. Liu, R. Ishikawa, K. Ueno, H. Shirai, J. Appl. Phys. 115, 123514 (2014)

    Article  Google Scholar 

  43. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, New York, 1953)

    Google Scholar 

  44. B. Vollmert, Polymer Chemistry (Springer, Berlin, 1973)

    Book  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a grant from the Japan Science and Technology Agency (JST) and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors wish to express their appreciation to Mr. Masayuki Sakurai and Mrs. Yoko Wasai of Horiba-Jobin Yvon Ltd., for the SE measurements. The authors also thank Mrs. Takashi Miyamoto and Koji Funato of Tokyo Direc Co. Ltd., for the allowance of the use of differential mobility analyzer. The one of authors (HS) wish to thank my colleague, Drs. Ishwor Khatri, Jaker Hossain, and Mrs. Shuji Funada, Koki Ichikawa, Kyohei Watanabe, Taiga Hiate, Kyohei Ishikawa, and Yoshinori Imamura for their efforts to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Shirai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirai, H., Liu, Q., Ohki, T., Ishikawa, R., Ueno, K. (2018). Optical Anisotropy and Compositional Ratio of Conductive Polymer PEDOT:PSS and Their Effect on Photovoltaic Performance of Crystalline Silicon/Organic Heterojunction Solar Cells. In: Ikhmayies, S. (eds) Advances in Silicon Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-69703-1_5

Download citation

Publish with us

Policies and ethics