Modeling and Simulation of New Generation of Thin-Film Silicon Solar Cells Using Efficient Light-Trapping Structures

Chapter

Abstract

Thin-film solar cells are the alternative over the crystalline solar cells in terms of manufacturing cost. The conversion efficiency of the thin-film solar cells is still less as compared to the conventional solar cells. This drawback has opened many doors of research in terms of the improvement of top antireflective coating, properties of the absorber layer, and use of light-trapping structure at the bottom. For antireflective coating, several materials such as SiO2, TiO2, ZnO, ITO, porous silicon, etc. have been investigated and reported the satisfactory results with respect to their electrical and optical limitations. Conversely, the light-trapping structure at the bottom is one of the crucial factors which allow the reuse of electromagnetic waves which are not being absorbed by the thin absorber layer. Accordingly, several perceptions have been reported to manipulate the electromagnetic waves with the use of an efficient light-trapping structure which reflects and guides the waves towards the thin absorber layer. With this passion, distributed Bragg reflectors, dielectric/metal nanogratings, and nanoparticles have been employed and claimed the enhanced photoconversion. In this chapter, we explore the design of thin-film silicon solar cells based on various light-trapping structures and study of their photovoltaic performance.

Notes

Acknowledgments

The financial support provided by Defence Research and Development Organisation (DRDO), New Delhi, India, is highly acknowledged.

References

  1. 1.
    E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron. Dev. 29(2), 300–305 (1982)CrossRefGoogle Scholar
  2. 2.
    M.A. Green, Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Progr. Photovolt: Res. Appl. 10, 235–241 (2002)CrossRefGoogle Scholar
  3. 3.
    L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K.A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, L.C. Kimerling, Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93, 221105 (2008)CrossRefGoogle Scholar
  4. 4.
    X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, Combined front and back diffraction gratings for broad band light trapping in thin film solar cell. Opt. Exp. 20(S5), A560–A571 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Sheng, G. Steven, L.J.Z. Broderick, J. Michel, L.C. Kimerling, Integrated photonic structures for light trapping in thin-film Si solar cells. Appl. Phys. Lett. 100, 111110 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Chutinan, N.P. Kherani, S. Zukotynski, High-efficiency photonic crystal solar cell architecture. Opt. Exp. 17(11), 8871–8878 (2009)CrossRefGoogle Scholar
  7. 7.
    L. Zhao, Y.H. Zuo, C.L. Zhou, H.L. Li, H.W. Diao, W.J. Wang, A highly efficient light-trapping structure for thin-film silicon solar cells. Sol. Energy 84, 110–115 (2010)CrossRefGoogle Scholar
  8. 8.
    N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L.C. Kimerling, X. Duan, Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Dev. 54(8), 1926–1932 (2007)CrossRefGoogle Scholar
  9. 9.
    R.S. Dubey, S. Saravanan, S. Kalainathan, Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector & diffraction grating. AIP Adv. 4, 127121-1-6 (2014)CrossRefGoogle Scholar
  10. 10.
    G. James, S.S. Mutitu, C. Chen, T. Crezzo, A. Barnett, C. Honsberg, D.W. Prather, Thin film silicon solar cell design based on photonic crystal and diffraction grating structure. Opt. Exp. 16(19), 15238–15248 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Xiao, E. Stassen, N. Asger Mortensen, Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures. J. Nanophoton. 6, 061503-1-061503-7 (2012)CrossRefGoogle Scholar
  12. 12.
    Jinna He, Chunzhen Fan, Junqiao Wang, Yongguang Cheng, Pei Ding, and Erjun Liang, Plasmonic nanostructure for enhanced light absorption in ultrathin silicon solar cells, Adv. OptoElectron., Article ID 592754, doi:https://doi.org/10.1155/2012/592754, 8 (2012).
  13. 13.
    W. Yan, G. Min, Comparative study of light absorption enhancement in ultrathin a-Si:H solar cells with conformal parabolaconical nanoarrays. J. Opt. 16, 045003–045006 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, T.P. White, K.R. Catchpole, IEEE Photon. J. 5(5), 8400608–8400608 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Cortes-Juan, C. Chaverri Ramos, J.P. Connolly, C. David, F.J. García de Abajo, J. Hurtado, V.D. Mihailetchi, S. Ponce-Alcantara, J. Guillermo Sanchez, Renew. Sustain. Energy 5, 033116–033112 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Sheng, H. Juejun, J. Michel, L.C. Kimerling, Light trapping limits in plasmonic solar cells: an analytical investigation. Opt. Exp. 20(S4), A496–A501 (2012)CrossRefGoogle Scholar
  17. 17.
    R. Chriki, A. Yanai, J. Shappir, U. Levy, Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure. Opt. Exp. 21(S3), A382–A391 (2013)CrossRefGoogle Scholar
  18. 18.
    P. Spinelli, V.E. Ferry, J. van de Groep, M. van Lare, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, A. Polman, Plasmonic light trapping in thin-film Si solar cells. J. Opt. 14, 024002–024011 (2012)CrossRefGoogle Scholar
  19. 19.
    C.-C. Chao, C.-M. Wang, Y.-C. Chang, J.-Y. Chang, Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell. Opt. Rev. 16(3), 343–346 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Lee, S. Kim, Optical Absorption Characteristic in Thin a-Si Film Embedded Between an Ultrathin Metal Grating and a Metal Reflector. IEEE Photon. J. 5(5), 4800610–4800611 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Saravanan, R.S. Dubey, S. Kalainathan, M.A. More, D.K. Gautam, Design and optimization of ultrathin crystalline silicon solar cells using an efficient back reflector. AIP Adv. 5, 057160-1-9 (2015)CrossRefGoogle Scholar
  22. 22.
    E. Battal, T.A. Yogurt, L.E. Aygun, A.K. Okyay, Triangular metallic gratings for large absorption enhancement in thin film Si solar cells. Opt. Exp. 20(8), 9458–9464 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Abass, K.Q. Le, A. Alu, M. Burgelman, B. Maes, Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. Physical Review B 85, 115449-1-8 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Shi, X. Wang, W. Liu, T. Yang, F. Yang, Hybrid light trapping structures in thin-film silicon solar cells. J. Opt. 16, 075706-1-17 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Liu, Z. Xia, W. Yonggang, H. Jiao, Z. Liang, J. Zhou, Light trapping enhancement in thin film silicon solar cells with different front and back grating periodicities. Chinese Opt. Lett. 11(12), 120501-1-3 (2013)Google Scholar
  26. 26.
    Saravanana, R.S. Dubey, Optical absorption enhancement in 40 nm ultrathin film silicon solar. Optics Commun. 377, 65–69 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Guo, J. Liu, S. Zhang, Design of light trapping structures for ultrathin solar cells. Photon. Optoelectron. 3, 66–68 (2014)CrossRefGoogle Scholar
  28. 28.
    J.J. Schermer, P. Mulder, G.J. Bauhuis, M.M.A.J. Voncken, J. van Deelen, E. Haverkamp, P.K. Larsen, Epitaxial Lift-Off for large area thin film III/V devices. Phys. Stat. Sol 202, 501–508 (2005)CrossRefGoogle Scholar
  29. 29.
    H. Taguchi, T. Soga, T. Jimbo, Epitaxial lift-off process for GaAs solar cell on Si substrate. Solar Energy Mater. Solar Cells 85(1), 85–89 (2005)Google Scholar
  30. 30.
    H.J. Kim, V. Depauw, G. Agostinelli, G. Beaucarne, J. Poortmans, Progress in thin film free-standing monocrystalline silicon solar cells. Thin Solid Films 511–512, 411–414 (2006)Google Scholar
  31. 31.
    M. Reuter, W. Brendle, O. Tobail, J.H. Werner, 50 μm thin solar cells with 17.0% efficiency. Solar Energy Mate. Solar Cells 93, 704–706 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Advanced Research Laboratory for Nanomaterials and Devices, Department of NanotechnologySwarnandhra College of Engineering and TechnologySeetharampuram, NarsapurIndia

Personalised recommendations