Advertisement

Absorption by Particulate Silicon Layer: Theoretical Treatment to Enhance Efficiency of Solar Cells

  • Alexander A. Miskevich
  • Valery A. Loiko
Chapter

Abstract

Absorption of light by single by crystalline silicon spherical particle and 2D and 3D layers from such particles is theoretically investigated in the wavelength range from 0.28 to 1.12 μm. The range of particle diameters from 0.05 to 1000 μm is covered. Absorption coefficient of monolayer of small- and wavelength-sized particles is calculated in the quasicrystalline approximation of the theory of multiple scattering of waves. For monolayer of large particles, the single scattering approximation is used. Absorption by multilayer is examined under the transfer matrix method. The spectral and integral over the sun spectrum absorption coefficients are studied. The results are compared with the data for homogeneous plane-parallel silicon plates of the equivalent volume of material (equivalent plates). The monolayer and multilayer consisting of silicon particles with sizes significantly smaller than the wavelength absorb lesser than the equivalent silicon plates. The absorption coefficient of the monolayer of large particles is smaller than the one of equivalent plate. Absorption by three- and more monolayer systems of such particles is larger than the one of the equivalent plates. Absorption by monolayer of wavelength-sized particles can be significantly larger than the one of the equivalent plate. It is caused by strong resonance scattering by individual silicon particles and strong multiple scattering in particle arrays. The narrow wavelength intervals (up to 10 nm) of the resonance peak spectral absorption coefficient of monolayer can be more than 100 times larger than the one of the equivalent plate. In the wavelength range from 0.8 μm to 1.12 μm, integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plate. Enhancement of light absorption due to tuning of the multilayer parameters is considered. The sketch of the solar cell based on gradient particulate structure of active layer is presented.

Notes

Acknowledgment

This work was supported in part by the Belarusian Republican Foundation for Fundamental Research (project F15IC-005).

References

  1. 1.
    A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering, 2nd edn. (Wiley, Chichester, 2011)Google Scholar
  2. 2.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley Interscience, Hoboken, 2007)Google Scholar
  3. 3.
    S. Domínguez, O. García, M. Ezquer, M.J. Rodríguez, A.R. Lagunas, J. Pérez-Conde, J. Bravo, Photonics Nanostruct. Fundam. Appl. 10, 46–53 (2012). https://doi.org/10.1016/j.photonics.2011.07.001 CrossRefGoogle Scholar
  4. 4.
    M.A. Tsai, P.C. Tseng, H.C. Chen, H.-C. Kuo, P. Yu, Opt. Express 19, A28–A34 (2011). https://doi.org/10.1364/OE.19.000A28 CrossRefGoogle Scholar
  5. 5.
    X. Sheng, S.G. Johnson, J. Michel, L.C. Kimerling, Opt. Express 19, A841–A850 (2011). https://doi.org/10.1364/OE.19.00A841 CrossRefGoogle Scholar
  6. 6.
    G. Kocher-Oberlehner, M. Bardosova, M. Pemble, B.S. Richards, Sol. Energy Mater. Sol. Cells 104, 53–57 (2012). https://doi.org/10.1016/j.solmat.2012.04.018 CrossRefGoogle Scholar
  7. 7.
    C.S. Schuster, S. Moraviec, M.J. Mendes, M. Patrini, E.R. Martins, L. Lewis, I. Crupi, T.F. Krauss, Optica 2, 194–200 (2015). https://doi.org/10.1364/OPTICA.2.000194 CrossRefGoogle Scholar
  8. 8.
    Z.R. Abrams, A. Niv, X. Zhang, J. Appl. Phys. 109, 114905-1–114905-9 (2011). https://doi.org/10.1063/1.3592297 CrossRefGoogle Scholar
  9. 9.
    A. Deinega, I. Valuev, B. Potapkin, Y. Lozovik, J. Opt. Soc. Am. A 28, 770–777 (2011). https://doi.org/10.1364/JOSAA.28.000770 CrossRefGoogle Scholar
  10. 10.
    R.B. Wehrspohn, J. Üpping, 3D photonic crystals for photon management in solar cells. Paper presented at conference frontiers in optics 2012: Laser Science XXVIII, Rochester, New York, United States, 14–18 October 2012. OSA Technical Digest (online) (Optical Society of America, 2012), paper LTh3G.5. (2012). https://doi.org/10.1364/LS.2012.LTh3G.5
  11. 11.
    L. Ji, V.V. Varadan, J. Appl. Phys. 110, 043114-1–043114-8 (2011). https://doi.org/10.1063/1.3626827 Google Scholar
  12. 12.
    V.F. Gremenok, M.S. Tivanov, V.B. Zalesski, Solnechnye elementy na osnove poluprovodnikovykh materialov (Solar Cells Based on Semiconductor Materials). (BSU, Minsk, 2007) (in Russian)Google Scholar
  13. 13.
    L. Tsakalakos, Mater. Sci. Eng. R. Rep. 62, 175–189 (2008). https://doi.org/10.1016/j.mser.2008.06.002 CrossRefGoogle Scholar
  14. 14.
    B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. Ther. 97, 114302–114312 (2005). https://doi.org/10.1063/1.1901835 CrossRefGoogle Scholar
  15. 15.
    K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, Nat. Mater. 11, 1017–1022 (2012). https://doi.org/10.1038/nmat3442 CrossRefGoogle Scholar
  16. 16.
    M. Saritas, H.D. McKell, Solid State Electron. 31, 835–842 (1988). https://doi.org/10.1016/0038-1101(88)90036-6 CrossRefGoogle Scholar
  17. 17.
    J. Toušek, S. Dolhov, J. Toušková, Sol. Energy Mater. Sol. Cells 76, 205–210 (2003). https://doi.org/10.1016/S0927-0248(02)00371-9 CrossRefGoogle Scholar
  18. 18.
    A.K. Sharma, S.N. Singh, N.S. Bisht, Z.H. Khan, Sol. Energy Mater. Sol. Cells 100, 48–52 (2012). https://doi.org/10.1016/j.solmat.2011.04.027 CrossRefGoogle Scholar
  19. 19.
    A.A. Miskevich, V.A. Loiko, J. Quant. Spectr. Rad. Transf. 146, 355–364 (2014). https://doi.org/10.1016/j.jqsrt.2013.12.008i CrossRefGoogle Scholar
  20. 20.
    A.A. Miskevich, V.A. Loiko, J. Quant. Spectr. Rad. Transf. 167, 23–39 (2015). https://doi.org/10.1016/j.jqsrt.2015.08.003 CrossRefGoogle Scholar
  21. 21.
    L. Shi, T.U. Tuzer, R. Fenollosa, F. Meseguer, Adv. Mater. 24, 5934–5938 (2012). https://doi.org/10.1002/adma.201201987 CrossRefGoogle Scholar
  22. 22.
    L. Shi, J.T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B.A. Korgel, F. Meseguer, Nat. Commun. 4, 1904 (2013). https://doi.org/10.1038/ncomms2934 CrossRefGoogle Scholar
  23. 23.
    I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, ACS Nano 7, 7824–7832 (2013). https://doi.org/10.1021/nn402736f CrossRefGoogle Scholar
  24. 24.
    A. Bapat, C. Anderson, C.R. Perrey, C.B. Carter, S.A. Campbell, U. Kortshagen, Plasma Phys. Controlled Fusion 46, B97–B109 (2004). https://doi.org/10.1088/0741-3335/46/12B/009 CrossRefGoogle Scholar
  25. 25.
    S. Barcikowski, A. Hahn, A. Kabashin, B.N. Chichkov, Appl. Phys. A Mater. Sci. Process. 87, 47–55 (2007). https://doi.org/10.1007/s00339-006-3852-1 CrossRefGoogle Scholar
  26. 26.
    C.Q. Li, C.-Y. Zhang, Z.-S. Huang, X.-F. Li, Q.-F. Dai, S. Lan, S.-L. Tie, J. Phys. Chem. C 117, 24625–24631 (2013). https://doi.org/10.1021/jp408865p CrossRefGoogle Scholar
  27. 27.
    A. Vladimirov, S. Korovin, A. Surkov, E. Kelm, V. Pustovoy, Laser Phys. 21, 830–835 (2011). https://doi.org/10.1134/S1054660X11080032 CrossRefGoogle Scholar
  28. 28.
    U. Zywietz, C. Reinhardt, A.B. Evlyukhin, T. Birr, B.N. Chichkov, Appl. Phys. A Mater. Sci. Process. 114, 45–50 (2014). https://doi.org/10.1007/s00339-013-8007-6 CrossRefGoogle Scholar
  29. 29.
    U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Nat. Commun. 5., Article no. 3402, 1–7 (2014). https://doi.org/10.1038/ncomms4402 CrossRefGoogle Scholar
  30. 30.
    G. Mie, Ann. Phys. 25, 377–445 (1908). https://doi.org/10.1002/andp.19083300302 CrossRefGoogle Scholar
  31. 31.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)Google Scholar
  32. 32.
    G.J. Rosasco, H.S. Bennett, J. Opt. Soc. Am. 68, 1242–1250 (1978). https://doi.org/10.1364/JOSA.68.001242 CrossRefGoogle Scholar
  33. 33.
    P.R. Conwell, P.W. Barber, C.K. Rushforth, J. Opt. Soc. Am. A 1, 62–67 (1984). https://doi.org/10.1364/JOSAA.1.000062 CrossRefGoogle Scholar
  34. 34.
    C.S. Zender, J. Talamantes, J. Quant. Spectrosc. Radiat. Transfer 98, 122–129 (2006). https://doi.org/10.1016/j.jqsrt.2005.05.084 CrossRefGoogle Scholar
  35. 35.
    A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Phys. Rev. B 82, 045404-1–04540412 (2010). https://doi.org/10.1103/PhysRevB.82.045404 CrossRefGoogle Scholar
  36. 36.
    R. Bachelard, P.W. Courteille, R. Kaiser, N. Piovella, Eplasty 97, 14004-p1–14004-p6 (2012). https://doi.org/10.1209/0295-5075/97/14004 Google Scholar
  37. 37.
    Z.Y. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Sci. Rep. 5, 7810-1–7810-6 (2015). https://doi.org/10.1038/srep07810 Google Scholar
  38. 38.
    V.A. Loiko, V.P. Dick, V.I. Molochko, J. Opt. Soc. Am. A 15, 2351–2354 (1998). https://doi.org/10.1364/JOSAA.15.002351 CrossRefGoogle Scholar
  39. 39.
    V.A. Babenko, L.G. Astafyeva, V.N. Kuzmin, Electromagnetic Scattering in Disperse Media (Praxis Publishing, Chichester, 2003)Google Scholar
  40. 40.
    V.A. Loiko, A.A. Miskevich, Appl. Opt. 44, 3759–3768 (2005). https://doi.org/10.1364/AO.44.003759 CrossRefGoogle Scholar
  41. 41.
    M. Lax, Rev. Mod. Phys. 23, 287–310 (1951). https://doi.org/10.1103/RevModPhys.23.287 CrossRefGoogle Scholar
  42. 42.
    M. Lax, Phys. Rev. 85, 621–629 (1952). https://doi.org/10.1103/PhysRev.85.621 CrossRefGoogle Scholar
  43. 43.
    K.M. Hong, J. Opt. Soc. Am. 70, 821–826 (1980). https://doi.org/10.1364/JOSA.70.000821 CrossRefGoogle Scholar
  44. 44.
    C.C. Katsidis, D.I. Siapkas, Appl. Opt. 41, 3978–3987 (2002). https://doi.org/10.1364/AO.41.003978 CrossRefGoogle Scholar
  45. 45.
    E. Centurioni, Appl. Opt. 44, 7532–7539 (2005). https://doi.org/10.1364/AO.44.007532 CrossRefGoogle Scholar
  46. 46.
    M.C. Troparevsky, A.S. Sabau, A.R. Lupini, Z. Zhang, Opt. Express 18, 24715–24721 (2010). https://doi.org/10.1364/OE.18.024715 CrossRefGoogle Scholar
  47. 47.
    Reference Solar Spectral Irradiance: Air Mass 1.5 (American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html. Accessed 10 Oct 2016
  48. 48.
    E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985)Google Scholar
  49. 49.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  50. 50.
    M. I. Mishchenko, J. W. Hovenir, L. D. Travis (eds.), Light Scattering by Nonspherical Particles (Academic Press, San Diego, 2000)Google Scholar
  51. 51.
    M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (University Press, Cambridge, 2002)Google Scholar
  52. 52.
    Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013). https://doi.org/10.1038/ncomms2538 CrossRefGoogle Scholar
  53. 53.
    S. Person, M. Jain, Z. Lapin, J.J. Sáenz, G. Wicks, L. Novotny, Nano Lett. 13, 1806–1809 (2013). https://doi.org/10.1021/nl4005018 CrossRefGoogle Scholar
  54. 54.
    J.M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L.S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J.J. Sáenz, F. Moreno, Nat. Commun. 3, 1–8 (2012). https://doi.org/10.1038/ncomms2167 CrossRefGoogle Scholar
  55. 55.
    M. Kerker, D.-S. Wang, C.L. Giles, J. Opt. Soc. Am 73, 765–767 (1983). https://doi.org/10.1364/JOSA.73.000765 CrossRefGoogle Scholar
  56. 56.
    A.A. Kokhanovsky, Light Scattering Media Optics. Problems and Solutions, 3rd edn. (Springer, Berlin, 2004)Google Scholar
  57. 57.
    A. Doicu, T. Wried, Y.A. Eremin, Light Scattering by Systems of Particles (Springer, Berlin, 2006)CrossRefGoogle Scholar
  58. 58.
    S. Ishii, S. Inoue, A. Otomo, J. Opt. Soc. Am. B 31, 218–222 (2014). https://doi.org/10.1364/JOSAB.31.000218 CrossRefGoogle Scholar
  59. 59.
    S. Ishii, R.P. Sugavaneshwar, K. Chen, T.D. Dao, T. Nagao, Opt. Mater. Exp. 6, 640–648 (2016). https://doi.org/10.1364/OME.6.000640 CrossRefGoogle Scholar
  60. 60.
    V. Savinov, V.A. Fedotov, N.I. Zheludev, Phys. Rev. B 89, 205112-1–20511212 (2014). https://doi.org/10.1103/PhysRevB.89.205112 CrossRefGoogle Scholar
  61. 61.
    A.E. Miroshnichenko, A.B. Evlyukhin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk’yanchuk, B.N. Chichkov, Y.S. Kivshar, Nat. Commun. 6, 8069 (2015). https://doi.org/10.1038/ncomms9069 CrossRefGoogle Scholar
  62. 62.
    A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Phys. Rev. B 84, 235429 (2011). https://doi.org/10.1103/PhysRevB.84.235429 CrossRefGoogle Scholar
  63. 63.
    A.B. Evlyukhin, C. Reinhardt, E. Evlyukhin, B.N. Chichkov, J. Opt. Soc. Am. B 30, 2589–2598 (2013). https://doi.org/10.1364/JOSAB.30.002589 CrossRefGoogle Scholar
  64. 64.
    M. Polyanskiy, Refractive index database. http://www.refractiveindex.info. Accessed 10 Oct 2016
  65. 65.
    A. Ishimaru, Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory, vol 1 (Academic, New York, 1978)Google Scholar
  66. 66.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (University Press, Cambridge, 2002)Google Scholar
  67. 67.
    S. Kachan, O. Stenzel, A. Ponyavina, Appl. Phys. B Lasers Opt. 84, 281–287 (2006). https://doi.org/10.1007/s00340-006-2252-8 CrossRefGoogle Scholar
  68. 68.
    V.A. Loiko, A.A. Miskevich, Opt. Spectrosc. 115, 274–282 (2013). https://doi.org/10.1134/S0030400X13070096 CrossRefGoogle Scholar
  69. 69.
    A.A. Miskevich, V.A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 136, 58–70 (2014). https://doi.org/10.1016/j.jqsrt.2013.05.013 CrossRefGoogle Scholar
  70. 70.
    A.A. Miskevich, V.A. Loiko, Photocell. Republic of Belarus Patent BY 18325, 27 Feb 2012Google Scholar
  71. 71.
    A.A. Miskevich, V.A. Loiko, Photocell. Russian Federation Patent RU 2491681, 11 Mar 2012Google Scholar
  72. 72.
    A.A. Miskevich, V.A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 112, 1082–1089 (2011). https://doi.org/10.1016/j.jqsrt.2010.11.019 CrossRefGoogle Scholar
  73. 73.
    A.A. Miskevich, V.A. Loiko, J. Experiment. Theor. Phys. 113, 1–13 (2011). https://doi.org/10.1134/S1063776111050153 CrossRefGoogle Scholar
  74. 74.
    K. Ohtaka, J. Phys. C: Solid St. Phys. 13, 667–680 (1980). https://doi.org/10.1088/0022-3719/13/4/022 CrossRefGoogle Scholar
  75. 75.
    K. Ohtaka, M. Inoue, Phys. Rev. B 25, 677–688 (1982). https://doi.org/10.1103/PhysRevB.25.677 CrossRefGoogle Scholar
  76. 76.
    M. Inoue, K. Ohtaka, S. Yanagawa, Phys. Rev. B 25, 689–699 (1982). https://doi.org/10.1103/PhysRevB.25.689 CrossRefGoogle Scholar
  77. 77.
    K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J.S. Bae, K. Mizuno, S. Yano, Y. Segawa, Phys. Rev. B 61, 5267–5279 (2000). https://doi.org/10.1103/PhysRevB.61.5267 CrossRefGoogle Scholar
  78. 78.
    A. Modinos, Phys. A 141, 575–588 (1987). https://doi.org/10.1016/0378-4371(87)90184-1 CrossRefGoogle Scholar
  79. 79.
    N. Stefanou, A. Modinos, J. Phys. Condens. Matter 3, 8135–8148 (1991). https://doi.org/10.1088/0953-8984/3/41/012 CrossRefGoogle Scholar
  80. 80.
    G. Gantzounis, N. Stefanou, Phys. Rev. B 73, 035115-1–03511510 (2006). https://doi.org/10.1103/PhysRevB.73.035115 CrossRefGoogle Scholar
  81. 81.
    V. Yannopapas, J. Opt. Soc. Am. B 31, 631–636 (2014). https://doi.org/10.1364/JOSAB.31.000631 CrossRefGoogle Scholar
  82. 82.
    A.B. Evlyukhin, C. Reinhardt, U. Zywietz, B.N. Chichkov, Phys. Rev. B 85, 245411-1–24541112 (2012). https://doi.org/10.1103/PhysRevB.85.245411 CrossRefGoogle Scholar
  83. 83.
    J.M. Ziman, Models of Disorder (University Press, Cambridge, 1979)Google Scholar
  84. 84.
    Z. Fisher, Statistical Theory of Liquids (University Press, Chicago, 1964)Google Scholar
  85. 85.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)CrossRefGoogle Scholar
  86. 86.
    G.V. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, 7th edn. (Academic Press, Oxford, 2012)Google Scholar
  87. 87.
    Y. Rosenfeld, Phys. Rev. A 42, 5978 (1990.) https://doi.org/10.1103/PhysRevA.42.5978 CrossRefGoogle Scholar
  88. 88.
    V.P. Dick, V.A. Loiko, Opt. Spectrosc. 117, 111–117 (2014). https://doi.org/10.1134/S0030400X14070066 CrossRefGoogle Scholar
  89. 89.
    V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 563–567 (1998)Google Scholar
  90. 90.
    V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 568–573 (1998)Google Scholar
  91. 91.
    V.K. Varadan, V.N. Bringi, V.V. Varadan, A. Ishimaru, Radio Sci. 18, 321–327 (1983). https://doi.org/10.1029/RS018i003p00321 CrossRefGoogle Scholar
  92. 92.
    J.A. Lock, C.L. Chiu, Appl. Opt. 33, 4663–4671 (1994). https://doi.org/10.1364/AO.33.004663 CrossRefGoogle Scholar
  93. 93.
    L. Tsang, J.A. Kong, K.-H. Ding, C.O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, New York, 2001)CrossRefGoogle Scholar
  94. 94.
    L.S. Ornstein, F. Zernike, Proc. Acad. Sci. 17, 793–806 (1914)Google Scholar
  95. 95.
    J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1–13 (1958). https://doi.org/10.1103/PhysRev.110.1 CrossRefGoogle Scholar
  96. 96.
    A.P. Ivanov, V.A. Loiko, V.P. Dick, Rasprostranenie sveta v plotnoupakovannykh dispersnykh sredakh (Propagation of Light in Close-packed Disperse Media). (Nauka i Tekhnika, Minsk, 1988) (in Russian)Google Scholar
  97. 97.
    R. Rengarajan, D. Mittleman, C. Rich, V. Colvin, Phys. Rev. E 71, 016615-1–01661511 (2005). https://doi.org/10.1103/PhysRevE.71.016615 CrossRefGoogle Scholar
  98. 98.
    T. Prasad, V.L. Colvin, D.M. Mittleman, Opt. Express 15, 16954–16965 (2007). https://doi.org/10.1364/OE.15.016954 CrossRefGoogle Scholar
  99. 99.
    A. Ishimaru, Y. Kuga, J. Opt. Soc. Am. 72, 1317–1320 (1982). https://doi.org/10.1364/JOSA.72.001317 CrossRefGoogle Scholar
  100. 100.
    Y. Okada, A.A. Kokhanovsky, J. Quant. Spectrosc. Radiat. Transf. 110, 902–917 (2009). https://doi.org/10.1016/j.jqsrt.2008.12.007 CrossRefGoogle Scholar
  101. 101.
    V.A. Loiko, G.I. Ruban, Opt. Spectrosc. 88, 756–761 (2000). https://doi.org/10.1134/1.626872 CrossRefGoogle Scholar
  102. 102.
    V.A. Loiko, G.I. Ruban, J. Quant. Spectrosc. Radiat. Transf. 89, 271–278 (2004). https://doi.org/10.1016/j.jqsrt.2004.05.040 CrossRefGoogle Scholar
  103. 103.
    V.A. Loiko, V.V. Berdnik, The Journal of Photographic Science 48, 12–25 (2003)Google Scholar
  104. 104.
    V.V. Berdnik, V.A. Loiko, J. Quant. Spectrosc. Radiat. Transf. 63, 369–382 (1999). https://doi.org/10.1016/S0022-4073(99)00025-4 CrossRefGoogle Scholar
  105. 105.
    V.A. Loiko, V.V. Berdnik, Part. Part. Syst. Charact. 15, 115–121 (1998.) 10.1002/(SICI)1521-4117(199817)15:3<115::AID-PPSC115>3.0.CO;2-NCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Physics of National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations