Optoelectronic Characteristics of Passivated and Non-passivated Silicon Quantum Dot

Chapter

Abstract

In this chapter, our recent research about the impact of hydrogen passivations and size on the electronic and optical features of silicon quantum dots will be reviewed. A theoretical modeling will be presented for silicon quantum dot with spherical topologies and treating their corresponding physical properties. This recent study was conducted by means of first principle calculations to explore the energy band gap versus the radius of Si quantum dots for passivated and non-passivated surface. The optimization of the structures of quantum dots was performed for both passivated and unpassivated quantum dots with various sizes. The interesting features for the electronic characteristic, such as the energy band gaps are higher in the case of hydrogenated surface than the unpassivated case. Accordingly, both quantum confinement and surface passivation provide information concerning the electronic and optical characters of Si quantum dots. The passivation impact on the surface dangling bonds with hydrogen atoms as well as the contribution of surface states on the gap energy are also presented. The hydrogen passivation influence increases the energy gap than that of pure silicon quantum dots. The significant character of the confinement and surface passivation on the optical properties are reviewed. The previous experimental determinations have shown that the optical properties of these dots were significantly affected by the quantum confinement effects. Overall, the hydrogen saturation surface controls principally the ground-state geometry, the energy gap, and optical absorption of Si quantum dots with the change of radius size. It was inferred in our previous study that the insertion of hydrogen could lead to the alteration of the electronic structure of silicon quantum dots. The saturated surface by hydrogen atoms has also a main contribution on the spatial distribution of the highest occupied and lowest unoccupied molecular orbitals. The hydrogen effect on optical absorption spectra and the static dielectric constant are also reviewed. Exclusively, the absorption threshold relationship of Si nanoparticles on the radius and hydrogenation surmise a decrease in the quantum confinement effect. The absorption spectra illustrated that the absorption properties are intimately accompanied with the surface saturation as well the radius of the dots. This theoretical finding could assist the comprehension of the microscopic mechanism which is spectacular for the devices performance and the potential application in nanotechnologies. This could highlight the significant optical parameters of silicon quantum dots for the purpose to comprehend the optical properties in the photoluminescence process of finite-size dots. The recent work about the optical absorption showed that the nanostructured Si could possess a very high luminescence in the visible regime as reported in the experimental inspection.

References

  1. 1.
    M. Forcales, N.J. Smith, R.G. Elliman, J. Appl. Phys. B 100, 014902 (2006)CrossRefGoogle Scholar
  2. 2.
    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)CrossRefGoogle Scholar
  3. 3.
    Z. Deng, X.D. Pi, J.J. Zhao, D. Yang, J. Mater. Sci. Technol. 29, 221 (2013)CrossRefGoogle Scholar
  4. 4.
    L.W. Wang, A. Zunger, Phys. Chem. 98, 2158 (1994)CrossRefGoogle Scholar
  5. 5.
    L. Koponen, L. Tunturivuori, et al., Phys.Rev. B 79, 2353321 (2009)CrossRefGoogle Scholar
  6. 6.
    Z.Y. Ni et al., J. Phys. D: Appl. Phys. 48, 314006 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Luppi, S. Ossicini, Phys. Rev. B 71, 035340 (2005)CrossRefGoogle Scholar
  8. 8.
    D. Li et al., Appl. Phys Lett. 104, 204101 (2014)CrossRefGoogle Scholar
  9. 9.
    L.E. Ramos, H.-C. Weissker, J. Furthm¨uller, F. Bechstedt, Phys. Status Solidi B 242, 3053 (2005)CrossRefGoogle Scholar
  10. 10.
    D. Melnikov, J.R. Chelikowsky, Phys. Rev. B 69, 113305 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Tsolakidis, R.M. Martin, Phys. Rev. B 71, 125319 (2005)CrossRefGoogle Scholar
  12. 12.
    F. Trani, G. Cantele, D. Ninno, G. Iadonisi, Phys. Rev. B 72, 075423 (2005)CrossRefGoogle Scholar
  13. 13.
    L. Yao, T. Yu, L.X. Ba, H. Meng, X. Fang, Y.L. Wang, L. Li, X. Rong, S. Wang, X.Q. Wang, G.Z. Ran, X.D. Pi, G.G. Qin, J. Mater. Chem. C 4, 673 (2016)CrossRefGoogle Scholar
  14. 14.
    B.B. Sahu, Y. Yin, J.G. Han, M. Shiratanib, Phys. Chem. Chem. Phys. 18, 15697 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Askari, M. Macias-Montero, T. Velusamy, P. Maguire, V. Svrcek, D. Mariotti, J. Phys. D: Appl. Phys. 314002, 48 (2015)Google Scholar
  16. 16.
    L. Eleonora, I. Federico, M. Rita, P. Olivia, O. Stefano, D. Elena, O. Valerio, Phys. Rev. B 75, 033303 (2007)CrossRefGoogle Scholar
  17. 17.
    F. Sangghaleh, I. Sychugov, Z. Yang, J.G.C. Veinot, J. Linnros, J. ACS Nano 9, 7097 (2015)CrossRefGoogle Scholar
  18. 18.
    B. Pejova, Semicond. Sci. Technol. 29, 045007 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Ossicini, L. Pavesi, F. Priolo, Light Emitting Silicon for Microphotonics (Springer, Berlin, 2004)Google Scholar
  20. 20.
    M.B. Gongalsky, L.A. Osminkina, A. Pereira, A.A. Manankov, A.A. Fedorenko, A.N. Vasiliev, V.V. Solovyev, A.A. Kudryavtsev, M. Sentis, A.V. Kabashin, V.Y. Timoshenko, Sci. Rep. 6, 24732 (2016). https://doi.org/10.1038/srep24732 CrossRefGoogle Scholar
  21. 21.
    M. Miyano, S. Endo, H. Takenouchi, S. Nakamura, Y. Iwabuti, O. Shiino, T. Nakanishi, Y. Hasegawa, J. Phys. Chem. C 118, 19778 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Shen, D. Chen, K. Tang, Y. Qian, S. Zhang, Chem. Phys. Lett. 375, 177 (2003)CrossRefGoogle Scholar
  23. 23.
    D. Zhang, A. Alkhateeb, H. Han, H. Mahmood, D.N. Mcllroy, M. Grant Norton, Nano Lett. 3, 983 (2003)CrossRefGoogle Scholar
  24. 24.
    G.W. Ho, A.S.W. Wong, D.J. Kang, M.E. Welland, Nanotechnology 15, 996 (2004)CrossRefGoogle Scholar
  25. 25.
    R. Rurali, Phys. Rev. B71, 205405 (2005)CrossRefGoogle Scholar
  26. 26.
    B. Tian et al., Nature 449, 885 (2007)CrossRefGoogle Scholar
  27. 27.
    D.V. Melnikov, J.R. Chelikowsky, Phys. Rev. Lett. 92, 046802 (2004)CrossRefGoogle Scholar
  28. 28.
    X. Liu, Y. Zhang, Y. Ting, X. Qiao, R. Gresback, X. Pi, D. Yang, Part. Part. Syst. Charact. 33, 44 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Ossicini, M. Amato, R. Guerra, M. Palummo, O. Pulci, Nanoscale. Res. Lett 5, 1637 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Askari et al., D. Appl. Phys. Lett. 104, 163103 (2014)CrossRefGoogle Scholar
  31. 31.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  32. 32.
    A. Laref, N. Alshammari, S. Laref, S.J. Luo, Sol. Energy Mater. Sol. Cells 120, 622 (2014)CrossRefGoogle Scholar
  33. 33.
    J.P. Proot, C. Delerue, G. Allan, Appl. Phys. Lett. 61(16), 1948 (1992)CrossRefGoogle Scholar
  34. 34.
    J.S. Biteen, D.P. Pacifici, N.S. Lewis, H.A. Atwater, Nano Lett. 5, 1768 (2005)CrossRefGoogle Scholar
  35. 35.
    B. Delley, E. F. Steigmeier, Phys. Rev. B 47, 1397 (1993); Appl. Phys. Lett. 67, 2370 (1995)Google Scholar
  36. 36.
    T. Trupke, J. Zhao, A. Wang, R. Corkish, M. Green, Appl. Phys. Lett. 82, 2996 (2003)CrossRefGoogle Scholar
  37. 37.
    L.-W. Wang, A. Zunger, J. Chem. Phys. 100, 2394 (1994)CrossRefGoogle Scholar
  38. 38.
    A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, Nature 427, 615 (2004)CrossRefGoogle Scholar
  39. 39.
    F. Bruneval, F. Sottile, V. Olevano, R.D. Sole, L. Reining, Phys. Rev. Lett. 94, 186402 (2005)CrossRefGoogle Scholar
  40. 40.
    I. Vasiliev, S. Ogut, J.R. Chelikowsky, Phys. Rev. Lett. 86, 1813 (2001); A.J. Williamson, J.C. Grossman, R.Q. Hood, A. Puzder, G. Galli, Phys. Rev. Lett. 89, 196803 (2002)Google Scholar
  41. 41.
    C. Delerue, M. Lannoo, G. Allan, Phys. Rev. Lett. 84, 2457 (2000)CrossRefGoogle Scholar
  42. 42.
    C.S. Garoufalis, A.D. Zdetsis, S. Grimme, Phys. Rev. Lett. 87, 276402 (2001)CrossRefGoogle Scholar
  43. 43.
    A. Zunger, Phys. Status Solidi A 190, 467 (2002)CrossRefGoogle Scholar
  44. 44.
    R.M. Martin, Electronic Structure (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  45. 45.
    K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 9, 73 (2005)CrossRefGoogle Scholar
  46. 46.
    J. Wilcoxon, G. Samara, et al. Phys. Rev. B 60, 2704 (1999)CrossRefGoogle Scholar
  47. 47.
    M. Wolkin, J. Jorne, et al., Phys. Rev. Lett. 82, 197 (1999)CrossRefGoogle Scholar
  48. 48.
    A.D. Zdetsis, C.S. Garoufalis, S. Grimme, in NATO Advanced Research Workshop on “Quantum Dots: Fundamentals, Applications, and Frontiers” (Crete 2003), ed. by B.A. Joyce et al. (Springer, Heidelberg, 2005), pp. 317–332Google Scholar
  49. 49.
    S.Z. Bisri et al., Adv. Mater. 26, 5639–5645 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Liu, Z.Y. Zhang, Y.F. Hu, C.H. Jin, L.-M. Peng, J. Nanosci. Nanotechnol. 8, 252 (2008)CrossRefGoogle Scholar
  51. 51.
    Y.-Y. Noh, X. Cheng, H. Sirringhaus, J.I. Sohn, M.E. Welland, D.J. Kang, Appl. Phys. Lett. 91, 043109 (2007)CrossRefGoogle Scholar
  52. 52.
    B. Ghosh et al., Adv. Funct. Mater. 24, 7151 (2014)Google Scholar
  53. 53.
    Y. Du Y et al., Acs Nano 8, 10019–10025 (2014)CrossRefGoogle Scholar
  54. 54.
    N.J. Thompson et al., Nat. Mat. 13, 1039 (2014)CrossRefGoogle Scholar
  55. 55.
    G. Conibeer, M. Green, et al. Thin Solid Films 511-512, 654 (2006)CrossRefGoogle Scholar
  56. 56.
    G. Conibeer, M. Green, M. Cho, et al., Thin Solid Films. 516, 6748 (2008); C.S. Garoufalis, A.D. Zdetsis, J. Math. Chem. 46, 952 (2009)Google Scholar
  57. 57.
    S.Z. Bisri, et al., Adv. Mater. 26, 5639–5645 (2014); R. Guerra, E. Degoli, et al., Phys. Rev. B. 80, 155332-1—155332-5 (2009)Google Scholar
  58. 58.
    D. König, J. Rudd, et al., Sol. Energy Mater. Sol. Cells 93, 753 (2009)CrossRefGoogle Scholar
  59. 59.
    W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)CrossRefGoogle Scholar
  60. 60.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  61. 61.
    M. Ribeiro Jr., L.R.C. Fonseca, L.G. Ferreira, Phys. Rev. B 241312(R), 79 (2009)Google Scholar
  62. 62.
    J. von Behren et al., Solid State Commun. 105, 17 (1998)CrossRefGoogle Scholar
  63. 63.
    M. Stupca, M. Alsalhi, T. Al-Saud, A. Almuhanna, M. Nayfeh, Appl. Phys. Lett. 91, 063107 (2007)CrossRefGoogle Scholar
  64. 64.
    F.A. Reboredo, A. Franceschetti, A. Zunger, Phys. Rev. B 61, 13073 (2000)CrossRefGoogle Scholar
  65. 65.
    G. te Velde et al., J. Comput. Chem. 22, 931 (2001)CrossRefGoogle Scholar
  66. 66.
    L.C. Lew-Yan-Voon, L.R. Ram-Mohan, Phys. Rev. B 47, 15500 (1993)CrossRefGoogle Scholar
  67. 67.
    M. Virgilio, G. Grosso, Nanotechnology 18, 075402 (2007)CrossRefGoogle Scholar
  68. 68.
    G. Pizzi, M. Virgilio, G. Grosso, Nanotechnology 21, 055202 (2010)CrossRefGoogle Scholar
  69. 69.
    O. Lehtonen, D. Sundholm, Phys. Rev. B 72, 085424 (2005)CrossRefGoogle Scholar
  70. 70.
    C. Tserbak, H.M. Polatoglou, G. Theodorou, Phys. Rev. B 47, 7104 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Science FacultyKing Saud UniversityRiyadh, King Saudi ArabiaSaudi Arabia
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations